TOPOLOGIES ON THE PRODUCTS

OF PARTICLE LATTICES

X.D. Zhao

(Dept. of Basic Sci., Yanshan Univ., Qinhuangdao, China)

-Summary-

Following [2], the products of topological particle lattices are given here. Some properties of the topologies on the products of topological particle lattices are also given.

Theorem 1. In $\bigotimes(L_i, \delta_i)$, if $J\subseteq I$ and $W_j\in L_j$ for $j\in J$, then $(\bigwedge_J p_j^{-1}(W_j))^- = \bigwedge_J p_j^{-1}(W_j^-)$.

Theorem 2. If e is a particle in $\bigotimes(L_i, S_i)$, then $e^- = \langle p_i(e) \rangle$. Theorem 3. A function f: $(L, S) \longrightarrow \bigotimes(L_i, S_i)$ is continuous iff each $p_j \circ f$: $(L, S) \longrightarrow (L_i, S_i)$ is continuous.

Theorem I If $\{(L_i, \delta_i): i \in I\}$ is a family of topological particle lattices, then both $f_{k,p}: (L_k, \delta_k) \longrightarrow \emptyset(L_i, \delta_i)$ and $F_{J,p}: \emptyset_J(L_j, \delta_j) \longrightarrow \emptyset_I(L_i, \delta_i)$ (refer to [2]) are

continuous.

Definition 1. Let (L, δ) be a topological particle lattice. We have the following concepts:

- (1) (L, \mathcal{E}) is a C_1 if it has a countable base of $\eta(p)$ for any particle p in (L, \mathcal{E}). It is called a C_2 if \mathcal{E} has a countable base.
- (2) (L, S) is a T_0 , if when p and q are not less than a same particle in L, $P \in \mathcal{N}(p)$ and $Q \in \mathcal{N}(q)$ such that $q \leq P$ or $p \leq Q$. It is a T_1 , if for each $q \in P(L)$ there is a particle p in L such that for every particle $r \neq p \Rightarrow \exists R \in \mathcal{N}(r)$ with $q \neq R$. (It is easy to see that (L, S) is a T_1 iff each particle is a closed element in (L, S)). It is a T_2 , if $p \wedge q = 0$ implies that there are $U \in \mathcal{N}(p)$ and $V \in \mathcal{N}(q)$ such that $U \vee V = 1$. Definition 2. (L, S) is compact iff any one of the following condition holds:
 - (1) Any net has an accumulation particle in (L, δ).
 - (2) Any net has a subnet which converge to a particle.
 - (3) Any filter has an accumulation particle in (L, δ).
- (4) For each $\mathcal{L} \subseteq \mathcal{L}$, if $\bigwedge \mathcal{L}_0 = 0$ there must be finite elements B_1, \ldots, B_m in \mathcal{L}_0 such that $B_1 \bigwedge \ldots \bigwedge B_m = 0$.

The definition of connectedness is similar to that for CDTL's given in [3].

Theorem 5. If $\{(L_i, S_i)\}$ is a family of topological particle lattices, then we have the following results:

- (1) $\bigotimes (L_i, \delta_i)$ is connected iff each (L_i, δ_i) is connected.
- (2) \otimes (L_i, S_i) is a C₁, iff there is a countable index set $I_0 \subseteq I$ such that each (L_i, S_i) is a C₁ for $i \in I_0$ and the

others are trivial.

- (3) \bigotimes (L_i, \S_i) is a C₂, iff there is a countable index set $I_0 \subseteq I$ such that for each $i \in I_0$ (L_i, \S_i) is a C₂ and the others are trivial.
 - (4) \otimes (L_i, δ_i) is a T_O iff each (L_i, δ_i) is a T_O.
 - (5) \otimes (L_i, δ_i) is a T₁ iff each (L_i, δ_i) is a T₁.
 - (6) \otimes (L_i, δ_i) is a T₂ iff each (L_i, δ_i) is a T₂.
- (7) \otimes (L_i, \mathcal{S}_i) is compact iff each (L_i, \mathcal{S}_i) is compact.

References

- [1] X.D. Zhao, Fuzzy particle lattices and fuzzy topological lattices. Perprints of Second IFSA Congress, 40-43.
- [2] X.D. Zhao, Products of particle lattices, BUSEFAL, to appear.
- [3] X.D. Zhao, Connectedness on fuzzy topological spaces, FSS, 20 (1986), 223-240.
- [4] B. Hutton, Products of fuzzy topological spaces, JMAA, 11 (1980), 59-67.
- [5] P.M. Pu & Y.M. Liu, Fuzzy topology I, JMAA, 76 (1980), 571-599.