PRODUCTS OF PARTICLE LATTICES

Xiaodong Zhao

Dept. of Basic Sci., Yanshan University, Qinhuangdao, Hebei, China

Following [1], we introduce the product of a family of particle lattices. Some useful properties are given here.

Let $\{L_i\colon i\in I\}$ be a family of particle lattices [1]. We use (p_i) to denote the element p in $\P P(L_i)$ which satisfying $p(i) = p_i$ for $i\in I$ (P(L) is the collection of all particles in L). And $\langle p_i\rangle$ denotes the subset $\{(q_i)\colon q_i\in P(L_i) \text{ and } q_i\leq p_i\}$ of $\P P(L_i)$, and \textcircled{Q}_I denotes the set $\{\langle p_i\rangle\colon p_i\in P(L_i) \text{ for } i\in I\}$ Definition 1. The product $\textcircled{Q} L_i$ of a family of particle lattices $\{L_i\colon i\in I\}$ is the collection of the elements which satisfying the following condition:

$$\begin{split} \mathbf{B} & \in \bigotimes \mathbf{L_i} \text{ iff } \mathbf{p_k} \leq \bigvee \{\mathbf{q_k} \colon (\mathbf{q_i}) \in \mathbf{B} \text{ and } \mathbf{q_i} \geq \mathbf{p_i} \text{ for } \\ \mathbf{i} \neq \mathbf{k} \} \text{ implies that } (\mathbf{p_i}) \in \mathbf{B} \text{ for each } \mathbf{k} \in \mathbf{I}. \end{split}$$

The order \leq in L is the " \leq ".

Proposition 1. If $B \in \otimes L_i$, $(p_i) \in B$ and $q_i \le p_i$ for each i in I, then $(q_i) \in B$.

Theorem 1. $\otimes L_i$ is a particle lattice, $\otimes_{\underline{I}} \subseteq P(\otimes L_i)$, and $B = \bigvee \{ \langle p_i \rangle : (P_i) \in B \}$ holds for each $B \in \mathcal{B} L_i$.

Definition 2. The mapping p_j : $\bigotimes L_i \longrightarrow L_j$ defined by $p_j(E) = \bigvee \{ q_j \colon (q_i) \in E \}$ is called the projecting mapping from $\bigotimes L_i$ to L_j .

It is easy to see that such p_j 's are functions (refer to [2, Def. 1.1 and Th. 1.2]). And we have the following results. Theorem 2. For $\bigotimes L_i$, if U_i and V_i are two elements in L_i for each $i \in I$ and $\bigwedge_I p_i^{-1}(U_i) \leqslant \bigwedge_I p_i^{-1}(V_i)$, then $U_i \leqslant V_i$ holds for each $i \in I$.

Theorem 3. For $\bigotimes L_i$, if $p_k^{-1}(U_k) \leq \bigvee_J p_j^{-1}(V_j)$ holds for $k \in J \subseteq I$ (in which the V_j is not the greatest element in L_j for $j \in J$), then $U_k \leq V_k$.

Theorem 4. If e is a particle in $\bigotimes L_i$, then for any $j \in I$ $p_j(e) \in P(L_j)$, and $e \in \bigvee_{k=1}^m p_{ik}^{-1}(W_{ik})$ iff $\angle p_i(e) > \in \bigvee_{k=1}^m p_{ik}^{-1}(W_{ik})$ for any $i_k \in I$ and $W_{ik} \in L_{ik}$.

Given a keI and a $p_i \in P(L_i)$ for $i \neq k$ and $i \in I$, we define a mapping $f_{k,p}: L_k \longrightarrow \bigotimes L_i$ as follows:

$$f_{k,p}(U) = \{ (q_i): q_k \leq U \text{ and } q_i \leq p_i \text{ for } i \neq k \}$$

where U€L_k.

Let J be a subset of the index set I. Given a $(p_j)_{J^c}$ in the product $T_{J^c}(L_j)$, the mapping $F_{J,p}: \otimes_J L_j \longrightarrow \otimes_I L_i$ is defined as follows:

$$F_{J,p}(W) = \{ (q_i): (q_j)_J \in W \text{ and } q_i \in p_i \}$$
for $i \in I \longrightarrow J \}$

for each $W \in \otimes_{J^L_j}$. (Here, $J^c = I \sim J$)

Theorem 5. The two mappings $f_{k,p}$: $L_k \rightarrow \otimes L_i$ and $F_{J,p}$: $\otimes_J L_j \rightarrow \otimes_L L_i$ are functions, and the inverse of them satisfying

$$f_{k,p}^{-1}(B) = \bigvee \{q_k : (p_i) \in B \text{ and } q_i \geqslant p_i \}$$

for $i \neq k \}$ for $B \in \mathcal{O} L_i$

and

$$F_{J,p}^{-1}(E) = \{(q_j)_J: (q_i) \in E \text{ and } q_i > p_i \}$$
for $i \in I \sim J$ for $E \in \mathcal{Q}_{I}L_i$.

References

- [1] X. D. Zhao, Fuzzy particle lattices and fuzzy topological particle lattices, Preprints of Second IFSA Congress, 40-43.
- [2] X. D. Zhao, Connectedness on fuzzy topological spaces, FSS, 20-(1986), 223-240.