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ABSTRACT
In this paper the definitions of a full row(column) and the

miniaun row(column) Space of & fuzzy matrix are ﬁut forward,

And we studied some relations between these concepts and renks
of a fuzzy matrix.

Keywords: The fuzzy matrix of a full row(column)., The

minimum row(column) space of & fuzzy matrix.

1 FUNDAMENTAL CONCEPTS

Let fuzzy matrices A = (a.ij )mxn , B mxn

(0,1} . The sum of the two fuzzy matrices, the scalar pro-

= (pij> and k€

duct of a number and a fuzzy matrix, and the relation "< "

of two fuzzy matrices are defined respectively as follows:

At B=lagy+Dygyyn = (max {5043 )y 3
kA = (kaij)mxn = (min {k'aij} )mxn ;
A<B iff Vi,j, a ;<byy .

Under the addition and scalar product the set of all n-ary

"
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fuzzy row( column) vectors forms a fuzzy semilinear space,

n n
denoted by V (V?), Let {X1, ooy X, } =V (VY), The set W of all
linear combination of X, , ... , X  is & subspace of Vn(Vn),
denoted by W = <X,;, ... , Xt) , &and W is called a generating
subspace by X1, cee o Xt' And the cardinal number of W g said
to be k, writed by Dim (W) = k.

2 THE FUZZY MATRIX OF A FULL ROW(COLUMN )

Definition 2.1 Let A is a fuzzy mxn matrix , A is called
& full row(column) rank matrix if p (A) =m ( P (A) =n),

In the paper (3) is given the concept of fuzzy relational

non-derministic equation.

Definition 2.2 Let A = (aij)m xpn 1S @ non-zero fuzzy matrix
« A equation in the form of

is called & fuzzy relational non-deterministic equation of
the fuzzy matrix A or non-deterministic equation of A,(where
A is known, Y and X are unknown). t in (2.,1) is called an
index., Y and X such that (2.1) holds are called the solution
matrices of the non-deterministic equation of A while index
is t.

In the paper (2) Waﬁg Hongxu proved thet:
Theorem 2.1 For a mxn fuzzy matrix A, p(A) = s if and
only if the non-deterministic equation of A has not & solu-~

tion while index 1<t s~1, but it has a solution while index

t=s.

4
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Proposition 2.1 For a fuzzy matrix A of order nxn, if
A=8 sCsxn *

then pP_(A4)¢€ s,
Theorem 2,2 Let A is a mxn fuzzy matrix .

(i) If every column vector of A is a linear combination of
n-ery fuzzy column vectors D,, ... , D,y then p S(A)ék.

(i1) If every row vector of A is a linear combination of
n-ary fuzzy row vectors C,, ... , Cys then Jos(A)s K,

Proof Since every column vectoe of A is a linear combina-

tion of m-ary fuzzy column vectors D1, cee Dk’ there exist

£4q oo £

in
Fkxn= 00 008 oeo0
Tr oo T4
such that A = (D:I eee Dk)mxk Fkxn ’o
Then (D1 cee Dk)mxk and Fkxn are solution matrices of the

non-deterministic equation of A for t = k.
<
Therefore p (A)€k,
Analogously may prove (ii).
Theorem 2.3 Let _/’S(A) = 8 and

A=B o Corpy * (2.2)
And let B = (B1 evee Bs)o (203)

mxs
Then

(1) Bysees,By are linear independent .
(i1) B is a full column rank.

(ii1) every column vector of A is a linear combination of

B1, LN ,Bs.

(lV) C(A)E<B1, eee BS> °

y
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(v) ¢4y +es , Cg are linear independent.
(vi) C is a full row rank.
(vii) every row vector of A is a linear combination of Cipone

’CS
(viii) R(A) & <Cyy oes 4 Cg> @

Proof. (i) we suppose that Byy ese o By are linear dependent
s Wthout loss of generality, we assume that Bs is a linear

combination of B1, eee 4 B :

s~1
k
b1s 01
BS= : =(B1 eoe BS-1) :
bm:~‘3 ks-1 ¢

Then
1 O ¢e0 O k1

O 1 ¢ o0 0 k2

(B1a"’Bs-1Bs) = (ByeeBgy)

* 0 O see 1 ks_1 (S-1)xs

Thus A= (B‘l eee Bg g Bs)mxscsxn
= (B1 oo Bg g )m x(s=1) (K(s-1)xscsxn)
where
1 O .60 O k1
0 1 eee O k2
K om1)x 8 T | ver ver ven voe oes
0 0O eee 1 k (s=-1)xs

S=
May see that pS(A)s s-1, which is in contradiction with the
hypothesis that P (4) = s,

Therefore B1 9 cee o Bs are linear independent.

(i1) B8 is a full column rank by (i).

(iii) Every column vector of A is lineear combination of By,

ces 4 By by (2.2).

i}
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Gv) C(A)S<B,, «uo,y B> by (1ii),

Similarly may prove (v), (vi), (vii) and (viii).
Theorem 2.4 Let as A as (2,2), (2,3), and (2.4), then

(1) Dim<By, «.. , By = s.

(ii) Dim<Cqy wee 4 Cr=s .

3 THE MINIMUM ROW (COLUMN) SPACE OF A FUZZY MATRIX
Let Wy, Wy=V (V7), we know that W, W, =+ Diy (W, )€ Din (W)
in fuzzy mathematics. ‘

Example 3,1 Let 1

0.8
A. = 0.8 0.7
0.7 0.6) .

The paper (2) finds Dim R(A) = fr(A) = 3, but j’s(A) =2,
Now we give that :
Definition 3.1 For fuzzy matrix A, & subspace with
contains R(A) and cardinal number is minimum is called
minimum row space of A, denoted by R min (A), Similarly may
define C min (4),
By the definition 3.1 we have that:
Proposition 3.1 R(A)ER min (A).
Theorem 3.1 Let as A as (2,2), (2.3), and (2.4). Then
(i) C min (A) =<By, +us , B>
(i1)R min (4) =<Cyy weu y C> \
Proof.By theorem 23 we have that C(A) S<B;, ... , B> »
Thus <By, ... , B,> is & subspace contained C(A),
By the theorem 24 we have that

Dim<B1, vee 9 Bs) = 8¢ Dim C(4),

So that Dim C min (A) € s,

,"
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We say that Dim C min (A)2S. otherwise, let
Dim C min (A) = k< s,

there exist m-ary column vectors D1, eee o D, such that <D1 ’

k
ees » D> 2C(A). Then every column vector of A is a linear
combination of D1, see o Dk' By the theorem 2.2 we know that
f’S(A)s k< s, which is in contradiction with the hypothesis
that P (A) = s. So that
Dim C min (A)2s

Therefore Dim C min (A) = s,
Theorem3,2 If mxn fuzzy matrix A there exist a rank , then
£a) = pP4),

Proof. Let f(A) = k , then P (A) =k, there exist m-ary

column vectors D1, ees o D

k such that<D1' cee Dk> = C(A)o

llay suppose that
A =(Dyy eoe s D) pe Meyy o
Then by proposition 2.1
fs(A)$k= PC(A). »
Since /’S(A) = 8, let as A as (2.2), (2.3), and(2.4). Then
C min (A-) =<B1’ see BS> .
By the definition 3.1, Dim <B;, «e. , B
‘PS(A) = S ?fs(A)o
Therefore ﬁS(A) = ’/’C(A)’ i.e. fS(A) =_P(A)o
In [7) Cao Zhiqiang proved that

g> ZDimC(4), i.e.

Theorem 3.3 For any nxn matrix A, A is a ultimately peri-

odic, i.e. there exist natural number pggq, such that

i}
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We write M= AP 4+ AP L, 4 A (3.2)
Theorem 3.4 Let as A as (3,1) and as M as (3.2) . Then

(1) P NS P (aP); |

(11) p )< P (4);

(111) £ (M)< P (45), (1€ k<p)

(1v) P M)€min § £ (8) , P (42), .uv, p (AP)} .

Py o
Proof (i) let f"s(A ) =3, A ans stno then

AP( I A+ .+ A%P)
=Xxs stn(In + A+ ees + ATP))
thus P (M)< s =fs(Ap). |
Similarly may prove (ii), (1ii) and (iv). |
Theorem 3.5 Let as A as (3,1) and as M as (3.2). Then
(1) . RM)ERMAE), k = 1,...,p
(11) R(M)ER min (4%), k=1, ... ,p
(111) o(M)sc(AX) k=1, ..0,p
(iv) C(M)SC min (AK), k=1, .e0,p
(v)  RAM)SRUAE), 1m1,2,..,
(vi) R(AK)SR nin (a¥™), k=1,2,...
(vit) R(AK)eR(AK™) ¥ n=1,2,...
(viii) R(A%)€ R min (AK™), k,h=1,2,...
(ix) c(AB)gc(ak*), k=1,2,...
(x) c(a¥)ec min (&K, k=1,2,...
(xi) c(a¥)=c(ak™), n,k=1,2,...
(x11) C(A¥)EC min (AK'™B)) k,h=t,2,...
Proof. (1) let a basic of R(4A¥) is A:, cen o A:_, then there
exist Xn r such that

“m
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( *
A7)
k _ .
A "anr H
A
L )
thus M = Ap T oeee + Aq = (Ap-k+ eee + Aq-k) .A.k
¥*
A
= p-k q~k .
= (A7 + oo+ A% x ) L
A
T

That is R(M)& <AT, cee A:_>= rR(AK),

(11i) Since R(AX)SR min (Ak), by (i) we give R(M)c
R min(a¥),

Similarly may prove other results.
Theorem 3.6 Let as A as (3.,1) and as M as (3.2). Then

(1) Dim R min (M) <Dim R min (A¥), k=1,...,p

(i1) Dim C min(i)< Dim ¢ min (4¥),k=1,..., p

(i1i) Dim R min (A¥)< Dim R min (A¥*"), k=1,2,...

(iv) Dim R min (A¥)<Dim R min (A¥™®), x,n=1,2,...
Theorem 3.7 Let s A as (3.1) and as M as (3.2)., And let

N=I +4+..,+a%P
Then (i) AP N =M =N AP (3.3)
(11) p(M)E p (V).
Proof, (i) Obviously.
(i1) By (3.3) APN =M, but by Theorem 3.6 have
L (AP I,) S pg)

That is LR W) p(N) or Lls P N).,

”
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