THE MINIMUN ROW (COLUMN) SPACE OF FUZZY MATRIX Wang Hongxu

Dept. of Basis. Liaoyang College of Petrochemistry CHINA

Yi Chongxin

Dept. of Basis. Qiqihar College of Light industry CHINA

ABSTRACT

In this paper the definitions of a full row(column) and the minimum row(column) space of a fuzzy matrix are put forward,

And we studied some relations between these concepts and ranks of a fuzzy matrix.

Keywords: The fuzzy matrix of a full row(column). The minimum row(column) space of a fuzzy matrix.

1 FUNDAMENTAL CONCEPTS

Let fuzzy matrices $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$ and $k \in \{0,1\}$. The sum of the two fuzzy matrices, the scalar product of a number and a fuzzy matrix, and the relation " \leq " of two fuzzy matrices are defined respectively as follows:

A + B =
$$(a_{ij} + b_{ij})_{m \times n} = (\max \{a_{ij}, b_{ij}\})_{m \times n}$$
;
kA = $(ka_{ij})_{m \times n} = (\min \{k, a_{ij}\})_{m \times n}$;
A \le B iff \forall i, j, $a_{ij} \le b_{ij}$.

Under the addition and scalar product the set of all n-ary

fuzzy row(column) vectors forms a fuzzy semilinear space, denoted by $V_n(v^n)$. Let $\{X_1, \dots, X_t\} \subseteq V_n(v^n)$. The set W of all linear combination of X_1, \dots, X_t is a subspace of $V_n(v^n)$, denoted by $W = \langle X_1, \dots, X_t \rangle$, and W is called a generating subspace by X_1, \dots, X_t . And the cardinal number of W is said to be k, writed by $V_n(v^n) = v_n(v^n)$

2 THE FUZZY MATRIX OF A FULL ROW(COLUMN)

Definition 2.1 Let A is a fuzzy mxn matrix. A is called a full row(column) rank matrix if $\rho_{\mathbf{r}}(A) = m \ (\rho_{\mathbf{c}}(A) = n)$.

In the paper (3) is given the concept of fuzzy relational non-derministic equation.

Definition 2.2 Let $A = (a_{ij})_{m \times n}$ is a non-zero fuzzy matrix. A equation in the form of

$$A_{m \times n} = Y_{m \times t} X_{t \times n}$$
 (2.1)

is called a fuzzy relational non-deterministic equation of the fuzzy matrix A or non-deterministic equation of A, (where A is known, Y and X are unknown). t in (2.1) is called an index. Y and X such that (2.1) holds are called the solution matrices of the non-deterministic equation of A while index is t.

In the paper (2) Wang Hongxu proved that: Theorem 2.1 For a m x n fuzzy matrix A, $f_s(A) = s$ if and only if the non-deterministic equation of A has not a solution while index $1 \le t \le s-1$, but it has a solution while index t = s. Proposition 2.1 For a fuzzy matrix A of order nxn, if

$$A = B_{n \times s} C_{s \times n}$$
,

then $\rho_s(A) \in s$.

Theorem 2.2 Let A is a m x n fuzzy matrix .

- (i) If every column vector of A is a linear combination of m-ary fuzzy column vectors D_1 , ..., D_k , then $f_s(A) \le k$.
- (ii) If every row vector of A is a linear combination of n-ary fuzzy row vectors C_1 , ..., C_k , then $\rho_s(A) \le k$.

Proof Since every column vector of A is a linear combination of m-ary fuzzy column vectors D_1 , ..., D_k , there exist

$$\mathbf{F}_{\mathbf{k} \times \mathbf{n}} = \begin{bmatrix} \mathbf{f}_{11} & \cdots & \mathbf{f}_{1n} \\ \cdots & \cdots & \cdots \\ \mathbf{f}_{\mathbf{k}1} & \cdots & \mathbf{f}_{\mathbf{k}n} \end{bmatrix}$$

such that

$$A = (D_1 \cdots D_k)_{m \times k} F_{k \times n}.$$

Then $(D_1 \cdots D_k)_{m \times k}$ and $F_{k \times n}$ are solution matrices of the non-deterministic equation of A for t = k.

Therefore $\rho_s(A) \leq k$.

Analogously may prove (ii).

Theorem 2.3 Let $f_s(A) = s$ and

$$A = B_{m \times s} C_{s \times n} . \qquad (2.2)$$

And let

$$B_{m \times S} = (B_1 \cdot \dots B_S). \tag{2.3}$$

Then

- (i) B_1, \dots, B_s are linear independent.
- (ii) B is a full column rank.
- (iii) every column vector of A is a linear combination of B_1, \dots, B_s .
 - (iv) $C(A) \leq \langle B_1, \dots, B_s \rangle$.

- (v) C1, ..., Cs are linear independent.
- (vi) C is a full row rank.

(vii) every row vector of A is a linear combination of $\mathbf{C_1}, \dots, \mathbf{C_s}$.

(viii)
$$R(A) \subseteq \langle C_1, \dots, C_s \rangle$$
.

Proof. (i) we suppose that B_1 , ..., B_s are linear dependent, Wthout loss of generality, we assume that B_s is a linear combination of B_1 , ..., B_{s-1} :

$$B_{\mathbf{S}} = \begin{bmatrix} b_{1} \mathbf{S} \\ \vdots \\ b_{m} \mathbf{S} \end{bmatrix} = (B_{1} \dots B_{\mathbf{S-1}}) \begin{bmatrix} k_{1} \\ \vdots \\ k_{\mathbf{S-1}} \end{bmatrix}.$$

Then

$$(B_{1}...B_{s-1}B_{s}) = (B_{1}...B_{s-1}) \begin{pmatrix} 1 & 0 & ... & 0 & k_{1} \\ 0 & 1 & ... & 0 & k_{2} \\ ... & ... & ... \\ 0 & 0 & ... & 1 & k_{s-1} \end{pmatrix} (s-1) \times s$$

Thus $A = (B_1 \cdots B_{s-1} B_s)_{m \times s} C_{s \times n}$ = $(B_1 \cdots B_{s-1})_{m \times (s-1)} (K_{(s-1) \times s} C_{s \times n})$

where

$$K(s-1) \times s = \begin{pmatrix} 1 & 0 & \dots & 0 & k_1 \\ 0 & 1 & \dots & 0 & k_2 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & k_{s-1} \end{pmatrix} (s-1) \times s .$$

May see that $f_s(A) \le s-1$, which is in contradiction with the hypothesis that $f_s(A) = s$.

Therefore B_1 , ... , B_s are linear independent.

- (ii) B is a full column rank by (i).
- (iii) Every column vector of A is linear combination of B_1 , ..., B_s by (2.2).

($_{\text{IV}}$) $C(A) \le \langle B_1, \dots, B_s \rangle$ by (iii).

Similarly may prove (v), (vi), (vii) and (viii).

Theorem 2.4 Let as A as (2.2), (2,3), and (2.4), then

- (i) $Dim \langle B_1, \ldots, B_s \rangle = s.$
- (ii) $Dim \langle C_1, \dots, C_s \rangle = s$.
- 3 THE MINIMUM ROW (COLUMN) SPACE OF A FUZZY MATRIX Let W_1 , $W_2 \subseteq V_n(V^n)$, we know that $W_1 \subseteq W_2 \implies \text{Dim } (W_1) \leq \text{Dim } (W_2)$ in fuzzy mathematics.

Example 3.1 Let $A = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 0.7 \\ 0.7 & 0.6 \end{bmatrix}.$

The paper (2) finds $Dim R(A) = \rho_r(A) = 3$, but $\rho_s(A) = 2$. Now we give that:

Definition 3.1 For fuzzy matrix A, a subspace with contains R(A) and cardinal number is minimum is called minimum row space of A, denoted by R min (A). Similarly may define C min (A).

By the definition 3.1 we have that:

Proposition 3.1 R(A)⊆R min (A).

Theorem 3.1 Let as A as (2.2), (2.3), and (2.4). Then

(i) C min (A) = $\langle B_1, ..., B_s \rangle$.

(ii)R min (A) = $\langle C_1, ..., C_s \rangle$.

Proof.By theorem 23 we have that $C(A) \subseteq \langle B_1, \dots, B_s \rangle$, Thus $\langle B_1, \dots, B_s \rangle$ is a subspace contained C(A).

By the theorem 24 we have that

$$Dim < B_1$$
, ..., B_s = $s \le Dim C(A)$.

So that Dim C min $(A) \leq s$.

We say that Dim C min (A) ≥S. otherwise, let

Dim C min (A) = k < s,

there exist m-ary column vectors D_1 , ..., D_k such that $\langle D_1$, ..., $D_k \rangle \supseteq C(A)$. Then every column vector of A is a linear combination of D_1 , ..., D_k . By the theorem 2.2 we know that $\mathcal{P}_s(A) \leqslant k \leqslant s$, which is in contradiction with the hypothesis that $\mathcal{P}_s(A) = s$. So that

Therefore Dim C min (A) = s.

Theorem 3.2 If m x n fuzzy matrix A there exist a rank, then $f(A) = f_S(A)$.

Proof. Let P(A) = k, then $P_c(A) = k$, there exist m-ary column vectors D_1 , ..., D_k such that $\langle D_1, \ldots, D_k \rangle = C(A)$. May suppose that

$$A = (D_1, \dots, D_k)_{m \times k} M_{k \times n}$$

Then by proposition 2.1

$$f_{s}(A) \leq k = f_{c}(A)$$
.

Since $\mathcal{P}_{s}(A) = s$, let as A as (2.2), (2.3), and (2.4). Then $C \min (A) = \langle B_1, \dots, B_s \rangle.$

By the definition 3.1, $Dim < B_1$, ..., $B_s > DimC(A)$, i.e. $f_s(A) = s > f_s(A)$.

Therefore $\mathcal{F}_{s}(A) = \mathcal{F}_{c}(A)$, i.e. $\mathcal{F}_{s}(A) = \mathcal{F}(A)$.

In (7) Cao Zhiqiang proved that

Theorem 3.3 For any $n \times n$ matrix A, A is a ultimately periodic, i.e. there exist natural number $p \leqslant q$, such that

$$A^{q+1} = A^p \tag{3.1}$$

We write
$$M = A^p + A^{p+1} + ... + A^q$$
 (3.2)

Theorem 3.4 Let as A as (3.1) and as M as (3.2). Then

(i) $f_s(M) \leq f_s(A^p)$;

(ii) $f_s(M) \leq f_s(A)$;

(iii) $\mathcal{P}_{s}(M) \leq \mathcal{P}_{s}(A^{k})$, $(1 \leq k \leq p)$

(iv) $\mathcal{P}_s(M) \leq \min \{ \mathcal{P}_s(A), \mathcal{P}_s(A^2), \dots, \mathcal{P}_s(A^p) \}$.

Proof (i) let $f_s(A^p) = s$, $A^p = X_{n \times s} Y_{s \times n}$, then $M = A^p + A^{p+1} + \dots + A^q$ $= A^p(I_n + A + \dots + A^{q-p})$ $= X_{n \times s} (Y_{s \times n}(I_n + A + \dots + A^{q-p}))$

thus $\rho_s(M) \leq s = \rho_s(A^p)$.

Similarly may prove (ii), (iii) and (iv).

Theorem 3.5 Let as A as (3.1) and as M as (3.2). Then

- (i) $R(M) \subseteq R(A^k), k = 1,...,p$
- (ii) $R(M) \subseteq R \min (A^k), k=1, \ldots, p$
- (iii) $C(M) \subseteq C(A^K), K=1,...,p$
- (iv) $C(M) \subseteq C \min(A^k), k=1,...p$
- (v) $R(A^k) \subseteq R(A^{k+1}), k=1,2,...$
- (vi) $R(A^k) \subseteq R \min (A^{k+1}), k=1,2,...$
- (vii) $R(A^k) \subseteq R(A^{k+h})$, k,h=1,2,...
- (viii) $R(A^k) \subseteq R$ min (A^{k+h}) , k,h=1,2,...
- (ix) $C(A^k) \in C(A^{k+1}), k=1,2,...$
- (x) $C(A^k) \subseteq C \min (A^{k+1}), k=1,2,...$
- (xi) $C(A^k) \subseteq C(A^{k+h}), h, k=1,2,...$
- (xii) $C(A^k) \subseteq C \min (A^{k+h}), k,h=1,2,...$

Proof. (i) let a basic of $R(A^k)$ is A_1^* , ..., A_r^* , then there exist X_n such that

$$A^{k} = X_{n \times r} \begin{pmatrix} A_{1}^{*} \\ \vdots \\ A_{r}^{*} \end{pmatrix}$$

thus $M = A^p + \dots + A^q = (A^{p-k} + \dots + A^{q-k}) A^k$ $= ((A^{p-k} + \dots + A^{q-k}) X_{n \times r}) \begin{bmatrix} A_1^* \\ \vdots \\ A_r^* \end{bmatrix}$

That is $R(M) \subseteq \langle A_1^*, \dots, A_r^* \rangle = R(A^k)$.

(ii) Since $R(A^k) \subseteq R$ min (A^k) , by (i) we give $R(M) \subseteq R$ min (A^k) .

Similarly may prove other results.

Theorem 3.6 Let as A as (3.1) and as M as (3.2). Then

(i) Dim R min (M) \leq Dim R min (A^k), k=1,...,p

(ii) Dim C min(M) \leq Dim C min (A^k), k=1,..., p

(iii) Dim R min $(A^k) \leq Dim R min (A^{K+1}), k=1,2,...$

(iv) Dim R min $(A^k) \leq D$ im R min (A^{k+h}) , k,h=1,2,...

Theorem 3.7 Let as A as (3.1) and as M as (3.2). And let

$$N = I_n + A + \dots + A^{q-p}$$

Then (i) $A^p N = M = N A^p$

(3.3)

(ii) $\rho_s(M) \leq \rho_s(N)$.

Proof. (i) Obviously.

(ii) By (3.3) $A^{p}N = M$, but by Theorem 3.6 have

$$f_s(A^p \times I_n) \leq f_s(X)$$

That is $f_s(A^p N) \leq f_s(N)$ or $f_s(M) \leq f_s(N)$.

REFERENCES

- [1] Kim. K.H. and Roush. F.W., Generalized FuzzyMatrix, Fuzzy Sets And Systems. 4(1980), 239-315
- (2) Wang Hongxu and He Zhongxiong, Solution of Fuzzy Matrix Rank, Fuzzy Mathematics, 4(1984), 35-44
- (3) Wang Hongxu et al., Fuzzy Relational Non-Determinstic Equation, Fuzzy Mathematics, 3(1984), 17-26
- [4] Zha Jianlu, The Dependent of A System Of Fuzzy Vectors And The Rank of A Fuzzy Matrix, Fuzzy Mathematics, 4(1984), 71-81
- (5) Wang Hongxu, Fuzzy Relational Non-Deterministic Equation And Solution of the Schein Rank of Fuzzy Matrix, BUSE-FAL, no 27(1986), 88-93
- [6]Zha Jinlu, The Dependent of a System of Fuzzy Vectors And The Rank of A Fuzzy Matrix, Fuzzy Mathematics, 2(1982), 11-19
- (7) Cao Ziqiang, The Eigen Fuzzy Sets of a Fuzzy Matrix, Approximate reasoning in Decision Analysis, M.M. Gupta and E. Sanchez (eds.) © North-Holland Pubishing Company, 1982, 61-63.