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With the devolopment of modern mathematics, set valué mapping (from a
set into its power set) is playing an increasingly important role so that
the upgrade of all kinds of the structures, studying their power struc-
ture, such as ordered, topological, measurable structure, etc, have been
considered by more and more people. Waturally it is also rather interest--
ing how to consider the upgrade of algebraic structure. First it is the
easiest thing to consider the upgrade of group. In this paper, we study
the problem and give some basic and interesting results.

1. THE DEFINITION AND EXAMPLES OF HX GROUP

We always assume that G is a group in the paper.
DEFINITION 1.1. In 2G-§¢} we define a algebraic operation:
AB=flab | aeA, beB} (1.1)

An nonempty setwg<:26-§¢} js called a HX group on G, if é] ﬁs a group with
respect to the operation (1.1), which its unit element fis denoted by E. Es-
pecially, a HX group@? is called a reqgular HX group, if eeE, which e is
just the unit element of G.

It is easy to know that E is a subsemigroup of G from E2=E.

A quotient group of G must be a HX group on G and its unit element be
a normal subgroup of G.

THEOREM 1.1. If @ is a HX group on G, then

1) (¥ e Q) (|Al=]B]);

2) (¥ A,Be()(ANB#E=> |AMB|=|E|)

Proof. 1) In one respect we have
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AE=A => (¥ aeA)(aEc AE=A) = |E|=|aE|<|Al;

In the other respect we have

A TAsE=> (v beA-])(bACA_1A=E)-=> |A|=]bA|< |E].

2)  First |AmB|=|A|=|E];

Second, ceAMB => cE< AMB =>|E|=|cE|<|AMB|. Q.E.D.

Since E is a subgroup we have _

Problem 1: Can we form a HX group\g on G by usihg a subsemigroup E of G
and E is just the unit element in\Q ?

Let E be a subsemigroup of G. For any a,beG, if there exists hek, such
that a=bh, then a and b are called right semi-modular congruence, denoted by

azb (right semodE) (1.2)

Clearly # is a transitive relation. Moreover 2 is reflexive iff eeE.

For any .aeG, write

aE={ beG | ba (right semodE)ﬁ} ' (1.3)
It is easy to see
aE={ah | het § (1.4)

We call aE a left quasi-coset of E, and also have the concept of right
quasi-coset, of couse, the concept of quasi-coset.

Remark: That aeaE is not true. For example, let G be the additive group
of real numbers and take E=(0,+m ). Then E is a semigroup of G, but aga+E=
(a,+o ) for any a eG. If we add a condition, the have the fact:

cef => (¥ aeG)(aeak); conversely, (JaeG)(aeak)=> eeE.

THEOREM 1.2. Let H be a subgroup of G and E be a subset of G satisfying
E2=E. If

(¥ aeH)(aE=ta) (1.5)
then

k9={aE|ad4} (1.6)
is a HX group on G and its unit element just E.

Proof. Take the surjection f: H ——+1? , a —»aE. Noting f(ab)=(ab)E=
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(ab)EE=a(bE)E=a(Eb)E=(aE) (bE)=f(a)f(b), soiihﬂg . Thus,é]is a group. More-
over, f(e)=eE=E. So E is the unit element of (. Q.E.D.

Semark 1: Since H™(, H/kerf ¥{ . This means that\Q formed as above
must be isomorphic with the quotient group of a certain subgroup of G.

Remark 2: The inverse proposotion of (E2=E =>[ is a semigroup) is not
true. For example, let G be the additive group of real numbers and take E=
[1,+#0 ). Then E is a semigroup, but E+E=[2,+m )#E. If eeE is assumed, then

g2

=f iff E is a semigroup of G.

Example 1.1: Let G be the multiplicative group of positive real numbers
and H the set of all positive ration numbers, and take E=[1,+®m ). Since they
satisfy the conditions in theorem 1.2, § = {aE | aeH1]='{;[a,+oo)‘a.éH'} is & HX
group on G. If we put f: H—’\.q , a+[a,+0), then H ¥ (. !

Example 1.2: Let G be the additive group of real numbers and H all inte-
gral numbers. Theé? =k | neH'} is a HX group on G and H ¥§. It is inte-
resting that O¢E and the elements ﬂw&? may form a countable chain:

...... (-2,+0 ) D(-1,+0 ) DE>(1,+0 )D>(2,+®) ......
Example 1.3: Let (G,+,=s).be a partial ordering additive group, and write
] ={[a,b]|a,beG} ,
where [a,b]={ceG| ascsb"j . Ing we define algebraic operation:
[a1,b1]+[a2,b2]=[a]+a2,b]+b2] |

It is easy to know that Q? js a HX group on G, and E=[O]7 Moreover the mapp-

ings:

f 1 g—=G g :0—=6
(a,b] —=a [a,b] —=b

are surjective no,omorphisms. Clearly, kerf={[0,b]|beG} , kerg={[a,0]laeﬁ}.
So J/kerf ¥ 6 ¥ kerf ¥ kerg ¥ /kerg.

Theorem 1.2 means that, if we give a semigroup E in G with

some condations, a HX group é? can be formed by a subgroup H of
G, and E is the unit element of § . Moreover H~(@ . Therefore, we

have answered the problem 1 in the affirmative.



34

2. BASIC THEOREM 2

As the inverse problem of the theorem 1.2, we have
Problem 2: If’@?is a HX group on G, whether is there a subgroup H of G
such that J ={aE| aeH 2
Let Jbe a HX group on G. Write
6 =uiAa| AeQY ‘ (2.1)
G°={ a€6 | a leg” }
PROPOSITION 2.1. 1) 6 s a semigroup of G;
2)  GO#p iff eeG’;
3)  GO#¢ iff 6° is a subgroup of G.
Proof. 1) a,beG" => (JA,BeJ) (ach,beB) => abeABCG -

2) Obvious.
3) aube@® = al,b e = (ab™ 1) Tebale6 = ab”'e6% =>G° is a sub-
group of G. Q.E.D.

PROPOSITION 2.2. LetJ? be a regular HX group. If G°<:H<:G*, then H is a
subgroup of G®H=G°.
Proof. => : If H#G® , take aeH-G°. Thus a leHeG™. So aeG®. This is in
contradiction with aga’.
& : (Obvious. Q.E.D. ,
BASIC THEOREM 1. Leté?be a HX group on G. If E is a subgroup of G, then
1 G ={eE] aeG*} ; |
2) 6 s a subgroup of G.
Proof. 1) ¥ Aeg, take aeA. We have ag cAE=A. It can be proved that
aE=A. If it is not true, then there exists beA-aE. Then we have a']béE because
To=ceE. For deA™! we have da and db eA” A=E. Thus a"Tp=a”ld™!

b=aceaf if a db=

(da)”'(db)eE. This is in contradication with a” IbgE. So af=A. This means that
. .
g c{aE| aeG }.
Conversely, ¥ aeG , J Ae(, such that aeA. So ab=Ae{J . Thus { aE| aeG*}cg.
* -
2) ¥ aeG , Aqg , such that aeA. Noting eeE and AA 1=E, then there
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exist beA, b']eA'1, such that bb'1=e. From A=bE we have ceE such that a=bc.

Vo leea a1 6™, Q.E.D.

So a~l=(bc) 1= b7 leEAT AT
Under the condations of the basic theirem 1, we have the following:
COROLLARY. 1) E is a normal subgroup of G*;

2)  6'=6%
3) =6 /E.
The following three specific cases important.
1) If G is a periodic group, then,£]=G*/E;
2) If £ is a finite set, then =6 /E;
3) If E is finite group, theni? =G*/E.
It is easy to prove the following theorem:
THEOREM 2.1. Let f be a homomorphism from G to anther group G'. We have
1) If (J is a HX group on G, then
G'={fm] ey (2.2)

is a HX group on G' and §~G 3

?2) Let f be a surjection. If‘£7'1s a HX group on G', then
G =Ll ned (2.3)

is a HX group on G and @~ G".

PROPOSITION 2.3. Let J be a HX group on G, and Be28-3p7 with B°=B. I

B satisfies the condation: (¥ Ae()(AB=BA), then

G 1rel A 9 (2.4)
is a HX group on G and NgB'
The proof 1is straight.
Basic theorem 1 answers affirmatively the problem 2. But the condarions
are so intense that 47 is iniensified as a quotient group which G* is with
respect to E.

In the following, we will reduce the condations and emphasize the struc-

ture of regular HX group.

3. BASIC THEOREM 2
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DEFINITION 3.1. Let E be a subsemigroup containing the unit element e of
G (i.e. a submonoid). E is called a norma1’subsemigroup of G , if
(¥ aeG)(aE=Ea) (3.1)
If‘JQ is a regular HX group on G, we may guess that E is a eegular sub--
semigroup of a certain subgroup of G.

Let (J be a HX group. For any Ael/, write

K:{aeM a'1eA']}, (3.2)
A is called kernel of A. Put
G=u{ & | nedl (3.3)

Clearly we have the following facts:
1) eeE=> (¥ AeQ)(A#Q), conversely, (4 Aeg)(A#¢)=> eeE;
2) G#P iff eeE.
BASIC THEOREM 2. If‘£7 is a regular HX group on G, then
1) G is a subgroup of G°;

) G ={at | 2B }

proof. 1) ¥ a,be8, JA,Be(], such that aek, beB. Thus ab”'e AB" l-ce Q.

") lopalern” 1.¢71, we nave ab “1eCcB. So G is a subgroup of G°.

From (ab
2) For any AeJ , A#B because § is regular. Taking aeh, we can prove
that aE=A. Clearly aEcAE=A. In the other respect, beA implies b=eb=(aa'1)b=
a(a”'b)ea(A'A)=aE. So AcaE. Thus A=aE. This means that < {aE] aeG}.
Conversely, ¥ aeG, AeQ, such that aeA. Thus A=aE. So {aE| ae@’}c\g,
Q.E.D.
Under the condations of the basic theorem 2, we have the following facts:
1) E is a normal subsemigroup of G;
2) E is a normal subgroup of G.
Under the ceéndation of\g being regular, the basic theorem 2 answers the
problem 2. In the following, we will describe the structure df regular HX

group in detail.

DEFINITION 3.2. Let E be a normal subsemigroup of G. The HX group as

following:
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6E= aE| aeG (3.4)
is called quasi-quotient group which G is with respect to E.
According to the definition, the pasic theorem 2 means, 1f¢g is regular,
then 42 must be a quasi-quotient graup of a certain subgrodp of G:

g GIE (3.5)
THEOREM 3.1.  1f.J is a regular HX group of G, then
G/E TGIE (3.6)
Proof. Making the mapping f : G — G|E, a +—>aE.Clearly f is surjec-
tion. So G/kerf ¥ G|E. We can prove that kerf=E.
ae kerf = a=aeeaE=E => (J beE)(ab=e) = a”'=beE => aeE.
For the other respect, we first note the fact as the following (it is easy
to know by the process of the proof of the basic theorem 2):
(¥ Ae ) (aeh => aE=A=Ea) (3.7)
Thus aeE => aE=E = aekerf. Q.E.D.
Let { be a HX group, and write |
g=F | e @Y (3.8)
THEOREM 3.2.  If ( 1is a regular HX group, then
g G/ (3.9)
Proof. ¥ Re(, taking aeh, then A=aE (noting (3.7)). We prove

ak=at (3.10)

xeak => (3 heE) (x=ah)=> x o1l epa!

xeak => (J hek)(x=ah) => h~ lox lae(aE) A=A

=a']E=(aE)‘]:é> x€ak .
1A=E => heE = x=aheaE.
This proves (3.10). So g <G/E.

Conversely,for any aEeG/E, there exists Ae @ since aeG, such that aeA.

Thus A=aE=aE. So G/E< @ . Q.E.D.
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