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QUANTUM LOGICS AND SOFT FUZZY PROBABILITY SPACES

JAROSLAW PYKACZ

Instytut Matematyki Uniwersytetu Gdannskiego
ul. Wita Stwosza 57, 80-952 Gdarnisk, Poland

The aim of my contribution is to compare two notions which have origins in
different branches of science but which show remarkable similarities. I hope
that such comparison will help to develope both ideas and can indicate direc-
tion of further interesting and fruitful investigations.

The first notion - the notion of a soft fuzzy probability space - belongs
to_the domain of fuzzy set theory and was defined for the first time by Piasecki
[1] in the following way:

Definition 1. Let X be a fixed crisp set. A-family @ of fuzzy subsets of X is
called a soft fuzzy e&-algebra if:

(sl) & contains the constant functions 0 and 1.

(s2) e does not contain the constant function 1/2.

(s3) @ is closed under standard fuzzy complement, i.e.

if Mmeg then M= 1 -Mea, (1)
(s4) 6 is closed under countable standard fuzzy union, i.e.
if phyy Myse.. € 8 then V| mjes. (2)

Definition 2. Each mapping p:deRﬂJ{O} having the following properties:
(pl) for any me@ p(MVI-m) =1,
(p2) if {,Mi} is a finite or infinite sequence of fuzzy subsets from € such

that /uig,ujf for i # j then

POV M) = 2 pCMy) (3)

is called a fuzzy P-measure on @ and a triplet (X, € ,p) is called a soft fuzzy
probability space.

Two fuzzy sets m,y which fulfill assumptions of the condition (p2) i.e.

such that

Mgl -y (4)
are called weakly separated sets by Piasecki in [2]. Any fuzzy set M such that

ML -p (5)
is in [2] called a weakly empty set and any fuzzy set Y such that

vy31l-vy (6)

is called a weak universum. As we shall see later all these notions appear as
well in the quantum logic theory.

The term "quantum logic" does not have the unique meaning throughout the
literature. Its origin lies in the axiomatic approach to quantum mechanics and
can be traced back to 1936 to the famous paper of Birkhoff and von Neuman "The
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logic of gquantum mechanics" [3]. The necessity of introducing it was implied
by the fact that in quantum physics there exist experimentally verifiable
questions which are not simultaneously answerable so the Lindenbaum - Tarski
algebra of the quantum theory cannot be a Boolean algebra [4]. Since the
Hilbert space formulation of gquantum mechanics proved to be very successful
and since in this formulation elementary experiments correspond to closed
subspaces of a suitable Hilbert space H, the lattice L(H) of all closed sub-
spaces of a Hilbert space is an object whose various features are chosen by
various authors as fundamental properties which define a quantum logic._ One
of the widest - spread approaches to quantum logic is that of Mackey [5]
whose axioms impose on the set of elementary experiments the structure of a
partially ordered orthocomplemented 6-orthocomplete orthomodular set with a
full set of probability measures. I adopt this point of view but I strongly
recommend an excellent reviev book of Beltrametti and Cassinelli [6] to the
reader who would like to acquire deeper insight into the physical background
of various aspects of this notion.

Let us now collect necessary definitions.

Definition 3. Let L be a partially ordered set ("poset") with the least element
0 and the greatest element 1. The mapping “:L»L is called an orthocomplemen-
tation iff it has the following properties:

(ol) a’’= a for any ael

(02) a ¢b implies bka’

(03) aua’=1 for any ael .

The symbol a u a’ in (03) denotes the least upper bound of a and a’ in L. ,
Conditions (02) and (03) imply that the greatest lower bound of a and a , ana,
exists in L as well and equals O:

(03') ana’=0 forany ael.

According to the usual definition of orthogonality in orthocomplemented
partially ordered sets ("orthoposets") two elements a and b are called orthogo-
nal whenever a ¢ b’ or, equivalently by (ol) and (02), bga .

Definition 4. An orthoposet L is called s-orthocomplete iff the least upper
bound of every countable sequence of pairwise orthogonal elements exists in L.

Definition 5. An orthoposet L is called orthomodular iff for any a,be€L such
that agb |

(oml) auvb exists in L, and

(om2) b = au(ba)’.

Let us notice that if an orthoposet L is 6—0thocompletg then the condition (oml)
is redundant since a b means that a is orthogonal to b” and therefore the least
upper bound of a and b exists in L.

Definition 6. A probability measure on a 6-orthocomplete orthoposet L is a map

nnL:»[O,l] which satisfies the following conditions:

(ml) m(1) =1,

(m2) if 7,89, is a sequence of pairwise orthogonal elements of L then
m(Uiai) = Zm(ai) .

1

Definition 7. A set M consisting of probability measures on L is full iff
m(a) ¢ m(b) for all meM implies agb .
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It should be stressed that the existence of probability measures on a G-ortho-
complemented orthomodular poset is a nontrivial fact since there exist examples
of such posets (even lattices) which do not admit probability measures at all [7].

Definition 8. A partially ordered set L satisfying conditions described in
definitions 3,4,5 and admitting full set of probability measures is called a
quantum logic.

The name used above is a traditional one but it is somewhat misleading since we
can easily check that any &-complete Boolean algebra - a structure which is
characteristic to classical, not quantum physics - is a quantum logic in the
sense of the definition 8. For this reason instead of "quantum logic" I shall
often write simply "logic" or, when the physical background of the notion should
not be forgotten, "logic of a physical system".

The elements of the logic of a physical system represent the most elementary
experiments which can be performed on the physical system under study i.e. ex-
periments with only two possible outcomes. They are called "questions" (possible
answers "yes" or "not"), "properties" (possessed or not), "propositions" (true
or false), etc. Physicists believe that the whole information about the physical
system which we can gain experimentally should be coded in the structure of the
logic L of the system.

Orthocomplementation in the logic of the physical system is realized as a
procedure of passing from any elementary experiment (question) to the experiment
performed exactly in the same way with the answer "no" put instead of "yes" and
vice versa. The partial order is established as follows:

a ¢ b iff, whatever is the state of the system, the probability of obtaining
positive answer for the question a is less than or equal to the probability
of obtaining positive answer for the gquestion b.

By a state of a system it is meant a collection of attributes which characterize
the physical system but which can be different in different situations and may
change with time. For this reason the notion of a state of a system is sometimes
identified with the prescription for (or procedure of) preparation of a system
[8]. Mathematically states are represented by probability measures on L. The
number m(a) has a physical meaning of the probability of obtaining the positive
answer for the question a when the system is in the state m. Therefore we can
rewrite the physical interpretation of the partial order in L in the form

ag¢b iff m(a) ¢m(b) for all meS (7

where S denotes the set of all these probability measures on L which represent
states of a system. We see that the set of all states S on a logic L is, by the
very definition of the partial order in L, a full set of probability measures.
States of a physical system, being probability measures on a logic, act as
real functionals on L but the opposite approach is possible as well: elements
of a logic can be treated as real functionals which map S into [0,1]. This fact
opens the possibility of identifying the elements of the logic L with the fuzzy
subsets of the set of all states S. Such point of view on a quantum logic was
proposed in [9]. According to it the number m(a) is interpreted as follows:

m(a) is the grade of membership of the state m to the subset of S which col-
lects all states for which the result of the experiment a is positive.

The idea of treating elements of a logic as functionals on the set of proba-
bility measures (without references to fuzzy set theory) was developed by
Maczyriski [10]. He studied a set of functions L which map a set X into real
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interval [0,1]. L was equipped with usual pointwise algebraic operations: natu-
ral partial order

f ¢g iff f(x) ¢ g(x) for all xeX (8)
and complementation
f=1-1. (9)

Next, he defined two functions to be orthogonmal iff f(x) + g(x) ¢ 1 for any
x € X and assumed that in L the following postulate is satisfied:

Orthogonality Postulate. For any sequence of pairwise orthogonal elements of L
fl’fZ”” there is an element gel such that g + fl + f2 ... =1 .

It occured that the orthogonality postulate is satisfied in L if and only if L
has the following properties:

(opl) L contains the constant function O,
(op2) L is closed under the complementation f£'= 1 - f,

(op3) L is closed under countable algebraic sums of pairwise orthogonal ele-
mwm,iﬁ.iffPfT.HéL,fAf.slﬂwnf+f+”.eL
i 7] 172
Moreover, Maczyriski proved that any set of functions which satisfies the ortho-
gonality postulate is a quantum logic in the sense of the definition 8 and con-
versly, any quantum logic is isomorphic to such set of functions:

Theorem 1. (Maczyriski [10] ) Let L.Q[O,l]x satisfy the orthogonality postulate
(or, equivalently, properties (opl),(op2) and (op3) ). Then L is an orthomodular
8 -orthocomplete orthoposet with respect to partial order (8) and complementa-
tion (9). Every point x eX induces a probability measure m_ on (L,&,”), where
m_(£)=f(x) for all fel and the family of all such measures ¥s full.

Conversly, if (L,¢,”) is an orthomodular & -orthocomplete orthoposet with a
full set M of probability measures then each a el induces a function a:M— [0,1]
where a(m) = m(a) for all meM. In the set of all such functions L ={a, ael}
the orthogonality postulate is satisfied and (L,&,”) is isomorphic to (L,<,").

Thanks to this theorem any logic of a physical system L is isomorphic to a
family of a fuzzy subsets of the set of all states S. Membership functions of
these subsets are defined by the equality a(m) = m(a) for every ael, meS.
Because of this isomorphism I shall denote both objects by the same symbol L
but I shall call L either "quantum logic" or "fuzzy quantum logic" if the first
or, respectively, the second meaning is given to L. Of course we can forget
about all physical background and define a fuzzy quantum logic in an abstract
way :

Definition 9. Let X be a fixed crisp set. A family L of fuzzy subsets of X will
be called a fuzzy quantum logic if in L the orthogonality postulate or, equiva-
lently, properties (opl), (op2) and (op3) are satisfied.

When we compare the definition of a fuzzy quantum logic (FQL) with the defi-
nition of a soft fuzzy ©&-algebra we see that any FQL satisfies conditions (sl)
and (s3) of the definition 1. The condition (s2) is by any FQL satisfied as well
because of the following theorem:
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Theorem 2. A fuzzy quantum logic does not contain any weakly empty set or any
weak universum except 0 and 1.

Proof. Let e be any weakly empty set and let u be any weak univwersum in a FQL
L. Inequalities (5) and (6) are equivalent to

e ¢1/2 (57)

uyl/2 ‘ (67)

so e¢l-e=e  and u’ = 1-ug¢u . Therefore ene = e and uvu = u where n
and U denote, respectively, the greatest lower bound and the least upper bound
in L partially orderedby (B). Since by the theorem 1 L is an orthoposet, from
the conditions (03) and (03 ) we obtain e = 0 and u = 1.

and

Corollary 1. A fuzzy gquantum logic does not contain any constant function
except 0 and 1.

This result is from the physical point of view quite natural since if L is a
fuzzy logic of a physical system and if ael were a constant function on the
set of states S then a would give no information about the structure of S (which
reflects features of a physical system) and therefore would be quite useless.
The constant functions 0 and 1 represent trivial experiments with unique outcomes
known in advance (for example the constant function 1 can represent an experiment
in which we check if a given physical system exists) and they are added to L
mainly for mathematical convenience.

The fact that a FQL does not contain any constant function except 0 and 1
follows as well from the following theorem:

Theorem 3. If a fuzzy quantum logic contains a function f # 0 then it does not
contain any function kf for ke (0,1).

Proof. If k e€(0,1/2) then kf<1/2 so kf#0 is a weakly empty set and it does not
belong to L by the theorem 2.

Let us now suppose that k e[1/2,1). It was noticed already by Maczyriski [10]
that in a set of functions L which satisfies the orthogonality postulate if ggf
then f - gel, therefore if kf belonged to L then £f-kf = (1-k)f would belong
to L as well. Since ke€[1/2,1), 1-k €(0,1/2] so (1-k)f€1/2 and (1-k)f # 0 is
a weakly empty set which cannot belong to L by the theorem 2.

Again the fact stated in the theorem 3 is not surprising from the physical
point of view. If we have two functions, f and kf, defined on the set of states
and representing elementary experiments both of them can be treated as repre-
senting measurements of the same physical quantity, the second experimental
device being less sensitive. For example let f represents an experiment in which
we measure intensity of a beam of particles of a special kind and let the exper-
imental device consists of a filter and a counter placed behind it. Now let re-
place the counter by a new-one which sensity is 80% of the previous one. This
new experimental device is represented by the function 0.8f but multiplication
of previous results by 0.8 does not reflect any change in the beam itself but
only a change in a measuring device. It does not reflect any actual feature of
a studied physical system and therefore there is no reason to include it in the
mathematical description of the system.

_ We have seen from the proof of the theorem 2 that it is exactly the fact that
f =1-f is an orthocomplementation in a FQL L which implies that L does not con-
tain any weakly empty set and any weak universum except 0 and 1. Now we shall
see that the opposite implication is also true.



155

Theorem 4. Let F denotes a family of fuzzy subsets of a fixed crisp set X. Let

F be closed under standard fuzzy complement (1;9), equipped with the natural
partial order (8) and let F contains constant functions 0 and 1. Complementation
(1;9) is an orthocomplementation in F if and only if O is the only weakly empty
set and 1 is the only weak universum in F.

Proof. The "only if" part of the theorem was shown in the proof of the theorem 2.

We shall check now that f = 1 - f is an orthocomplementation in F. Since
conditions (ol) and (02) of the definition 3 are obviously fulfilled, the con-
dition (03) is the only one which must be proved. .

Let £ be any element of F. Of course 1 is an upper bound of f and £ . To show
that it is the least upper bound of f and f 1let us suppose that f¢ g and f<g.
Adding both sides of these inequalities we obtain 1/2¢g so g is a weak universum
but since 1 is the only weak universum in F, fvf = 1.

As a corollary we obtain the following theorem:

Theorem 5. The standard fuzzy complementation (1;9) is an orthocomplementation
in a soft fuzzy ®-algebra € equipped with the natural partial order (8) if and
only if © consists exclusively of crisp sets.

Proof. If a soft fuzzy 6-algebra consists exclusively of crisp sets then it
obviously cannot contain any weakly empty set but O and any weak universum but 1.
Conversly, let fe & . The condition (s4) of the definition 1 implies that
fvied but fvEi'»1l/2 so fVf is a weak universum. Since the standard fuzzy

complementation (1;9) is an orthocomplementation by the theorem 4 the only weak
universum in © is 1 so we have fVf = 1. This means that for any x € X
max(£(x),1-f(x)) = 1 so either f(x) =1 or 1-f(x) =1, i.e. f is a crisp set.

Since any fuzzy quantum logic is orthocomplemented by (1;9) this theorem shows
that crispness of all elements of soft fuzzy 6€-algebra is the necessary condi-
tion for it to be a fuzzy quantum logic. The next theorem shows that this condi-
tion is also sufficient.

Theorem 6. A soft fuzzy ©-algebra 6 is a fuzzy quantum logic if and only if
it consists exclusively of crisp sets.

Proof. Since the "only if" part follows directly from the previous theorem and
since conditions (s1) and (opl) as well as (s3) and (op2) of the definitions 1
and 9 are identical (of course in (sl) the assumption that & contains the con-
stant function 1 is redundant as soon as (s3) is assumed) it suffices to prove
(op3) i.e. that € is closed under countable algebraic sum of pairwise orthogo-
nal elements. :

Let f,,f,,... be a sequence of pairwise orthogonal elements. Since all ele-
ments in~ & “are assumed to be crisp pairwise orthogonality of f,,f,,... implies
that for any x e X if f,(x)=1 then £.(x)=0 for -all j#i. Thereforé tge standard
fuzzy union V. f which belongs td © by (s4) in the case of pairwise orthogo-
nal elements cdinkides with the algebraic sum of these elements and the condition
(op3) is proved.

The theorem 6 could not be proved if the roles of a soft fuzzy ©-algebra
and a fuzzy quantum logic were exchanged. To show this let us examine the fol-
lowing example:

Example 1. Llet X = [0,1] and let L = {0,f,£7,9,0",1} where £ and g are,

respectively, characteristic functions of intervals tl/3,2/3] and [0,1/2] re-
stricted to X. It can be easily checked that, besides of pairs which contain 0
(0 is orthogonal to any other element), the only orthogonal pairs are f,f and
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g,g and that L is a fuzzy quantum logic. L is not a soft fuzzy o-algebra since
for example fvg is a characteristic function of the interval [0,2/3] which
does not belong to L.

0f course there are numerous examples of fuzzy quantum logics (consisting,
because of the theorem 6, exclusively of crisp sets) which are soft fuzzy ¢-alge-
bras. For example a family of characteristic functions of any Boolean algebra of
crisp subsets of any fixed crisp set is both a FQL and a soft fuzzy ¢-algebra.
It is caused, as we have seen in the proof of the theorem 5, by the condition
(s4) which, when combined with (s3) forces any soft fuzzy &-algebra to contain
together with a non-crisp set £ a weak universum fvEi’# 1. Let us notice that
it was again the condition (s4) which prevented in the example 1 the fuzzy quantum
logic L from being a soft fuzzy &-algebra. Mgczyriski in the proof of his theorem
1 has shown that in the case of pairwise orthogonal elements of a fuzzy quantum
logic the algebraic sum Z}ifi coincides with the least upper bound k)ifi so the

condition (op3) expresses simply the fact that a FQL is a d&-orthocomplete
orthoposet. Since in both cases - of a FQL and of a soft fuzzy 6 -algebra - the
partial order (8) is the same, we see that the difference between fuzzy quantum
logics and soft fuzzy ¢-algebras is caused mainly by the fact that the standard
fuzzy union V i.e. a pointwise supremum of membership functions does not coin-
cide with the "global" supremum U with respect to the partial order (8) in a FQL
(L,&,”). Of course a FQL as defined by the definition 9 is necessarily closed
under suprema of pairwise orthogonal elements only, but even for these authors
who assume a quantum logic to be a lattice (cf.|6|) since generally V # U, a FAL
containing even one non-crisp set would not be a soft fuzzy ¢ -algebra.

It seems to me that the condition (s4) in the definition 1 was introduced
mainly to ensure additivity of fuzzy P-measures. But according toc the definition
2 a fuzzy P-measure is assumed to be additive not on arbitrary sequences of fuzzy
subsets but only on sequences which consist of pairwise weakly separated i.e.
according to a FQL terminolgy pairwise orthogonal elements. Therefore, according
to my oppinion, it would be worthy to weaken the condition (s4) of the definition
1 and assume a soft fuzzy ¢-algebra to be closed under countable fuzzy union of
sequences of pairwise orthogonal elements only. Such change would not cause many
modifications in the whole theory of soft fuzzy & -algebras and would not cause
the notion of a soft fuzzy €-algebra to be identical with the notion of a fuzzy
quantum logic but should make both theories more similar. Particularly, the situ-
ation described in the example 1 would be impossible i.e. any FQL consisting
exclusively of crisp sets would be a soft fuzzy ¢-algebra.

Let me finish with some remarks on probability measures on fuzzy gquantum
logics and fuzzy P-measures on soft fuzzy ¢é-algebras.

When we compare definitions 2 and 6 we see that since 1V(1 - 1)=1, if a
mapping p satisfies the condition (pl) then it satisfies (ml) as well. Since in
the case of a FQL the condition (op3) of the definition 9 expresses ¢-orthocom-
pletness of a FQL, we can rewrite condition (m2) of the definition 6 in the form:

(m27) if fl’fZ"" is asequence of pairwise orthogonal elements of a fuzzy
gquantum logic then m(Zifi) = zim(fi)'

i.e this condition expresses additivity of a probability measure m on a fuzzy
quantum logic with respect to algebraic sums of pairwise orthogonal elements.

The condition (p2) of the definition 2 expresses additivity of a fuzzy P-measure
as well but with respect to standard fuzzy unions of pairwise orthogonal elements.
The standard fuzzy union of a collection of fuzzy subsets coincides with their
algebraic sum if and only if the following implication holds

1) $0 = fj(x)=0 for all j#1i and xeX
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so only in such a case , for example if all sets in a pairwise orthogonal
sequence are crisp (cf. proof of the theorem 6), the condition (p2) coincides
with (m2).

We are ensured by the theorem 1 that any FQL admits a full set of probability
measures generated by points in the domain X of L. In the case of soft fuzzy
@ -algebras and fuzzy P-measures the situation can be such only if a soft fuzzy
@ -algebra consists exclusively of crisp sets i.e. when by the theorem 6 it is
actually a fuzzy quantum logic:

Theorem 7. If a soft fuzzy G-algebra © admits a full set of fuzzy P-measures
P (i.e. if p(m) ¢ p(v) for all peP implies msVY) then:

(i) 1 is the only weak universum in &,
(ii) 0 is the only weakly empty set in &,
(iii) e consists exclusively of crisp sets.

Proof.

(1) If u is any weak universum in & then p(u)=1 for any fuzzy P-measure p
so we have p(l)=1<1=p(u) for all peP. Since the set of fuzzy P-measures P is
assumed to be full this implies that 1guso u = 1.

(ii) The proof is analogous to (i).

(1ii) Piasecki in [2] has shown that for any mee, mV(l-M) is a weak univer-

sum so by (i) mv (1-M) = 1 and therefore by the same argument as in the proof
of the theorem 5 m is a crisp set.
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