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IF N ARGUING ABOUT THE DAYS OF THE WEEK
WE FIND IT CONVENIENT TO SAY THAT FIVE AND
FOUR MAXKE Tw0, WE MAY EXPECT TO GET MORE
PARADOX| CAL STATEMENTS ABOUT SYSTEMS MORE
COMPLI CATED THAN THE WEEK.
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1. INTRODUCTION

For A Mataix A  AND A Fuzzy SET X, WE DENOTE
X (&:> _ ZE: T €4CA,
TN T 4 cl ke
L .
~ T pl ) ~ Atrv
2o (&)= (LG A)E = €%,
L

T > O REAL, L= O, 1, 2, ... INTEGER (THE OPERATIONS WillL

BE FIXED LATER). SURPRISINGLY OR NOT, IN SOME INSTANCES

gt(xa)#act(fo).

To REVEAL CONDIT)IONS THAT ENSURE THE EQUALITY 1S OUR Atm. IT

IS JUSTIFIED BY THE FACT THAT, FIRSTLY, TO THE FUZZY-VALUED
~ NS

FUNCTIONS xr(xo) AND xt(xo OF THE VARIABLE T WE ASSIGN

THE SENSE OF EVOLUTION OPERATORS FOR THE SYSTEM

iszx,

dt
~  ~

W)TH A FU2ZY INITIAL STATE X A LA [4]; SECONDLY, ON THE
MATRIX EXPONENTIAL eAt THERE 1S AN AMPLE LITERATURE [2].
SINCE THE DIFFICULTIES ARISE EVEN FOR ORDINARY, NON-FUZZY,
SETS AND S| NCE FUZZY SETS CAN RE COMPLETELY DESCRIBED IN
TERMS OF THEIR LEVEL SETS, WE RESTRICT OURSELVES TO THE CASE
OF ORDINARY SETS; TO EMPHAS1ZE THIS IN WHAT FOLLOWS WE

REPLACE ~ B8y — . PresedTED BELOW SHOULD BE CALLED THE

NAIVE APPROACH.
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2. NOTATH)N

n
As usuaL, BY R™ we wmean Tne EvcLiDEAN n-space (FOR SOME

POSITIVE INTEGER n). LET

—

Let aLso i:., J , XL, BE NON-EMPTY COMPACT SUBSETS OF R

AND 5 A NON-EMPTY COMPACT SUBSET OF THE NON-NEGATIVE REAL

NUMBERS. FINALLY, LET A e a4 reaL  n-es-n. matRix. Equip

THE COLLECT|ON OF ALL JC. WITH THE STANDARD STRUCTURE:

=y < (xea?,@xéj t/ac))
+J = {xry: wex, y€7 },

]

BI

—

Jl‘_
gac = {Ja:: 563})
Aa“c,r-{AOC: a‘.ei},

fye: zez ],

)- max/max min /J-x/ max min /x“J/}

xXe X jej \yéj XE€X
I+ s IN THIS SENSE THAT THE EQUATION SYMROLS \'ﬁt(xo) AND

2, () sHouLp BE CONCEIVED.
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3. E1®EN MULTIVECTORS

HERE
DEF NI TION. 2 1S AN EIGEN MULTIVECTOR OF A \F THER

EX)ST 5 , X AND Z{ SUCH THAT
A£=a7x=5’f.

0SED THAT X & X
Lemma. IN THIs DEFINITION IT CAN BE SUPPOS o b’t_,
b/e X AND A:JC::A/JC . As A CONSEQUENCE, &€ X =& X .

Proor. 1r (xéi)& (b’¥ 0), Wi TH
Ax =yx=yx,

THEN THERE EXST (‘j € 2 anp € éa’ SUCH THA

Ax—_ -.=5;J = £,
Tue cAse (x;E/ x) & (574 0) wiTH THE SUBCASES X= {O} AND

SE#{O} REDUCES TO THE PREVIOUS ONE. The CASE X'= 0 s Tiviac.



4. SeparapiLTY

DersiniTiON. X IS A-SEpAaAaLE {E T CAN BE EXPRESSED AS

A SUM OF EJGEN MULT!|VECTORS OF A OR, TO PYT THE OTHER WAY

ROUND, AS A MULTISUM OF EIGENVECTORS oF A .

Tusoren. Ir X, 1s A-SEPARABLE, THEN xt(xo) s
( A-SEPARABLE AND) EQUAL ToO xt(xo) )

Proor (BY INDUCTION). Ir

_ — Az __ 0t
AR =yx , e &Z=¢ X,

THeN (FoR ZS;O )

E (x =€Jt£=eAT£=9C (i)
. (=) z

Ir Now THERE EXiST L AND J  SuCH THAT L= X AY AN
Xo (%) = *z(Z),
z.(y) = 2(F),
THEN
2z (®,) = Er(x—)*zt(j) =
2, () +3:(§)= & (). een.



