ON FUZZY REGULARITY AND SOME WEAKER SEPARATION AXIOMS IN FTS

Dewan Muslim ALI*

Department of Mathematics Rajshahi University Rajshahi, Bangladesh

1. Introduction

This paper is a summery of our research work. In Section 2, we give a complete comparison of fuzzy regularity concepts presently in use and obtain their characterizations, in Section 3, we introduce and study weaker forms of fuzzy T_1 , fuzzy T_2 , fuzzy T_0 , fuzzy T_1 and fuzzy regular spaces and in Section 4, we note some shortcomings of the fuzzy Hausdorffness concept of Azad [3] and introduce a related concept of fuzzy Hausdorffness, viz. α -Hausdorffness, which possesses many pleasing properties. We use mainly Chang's topology [4] in this paper. We also use the following facts:

Let $\mathbf{x_r}$ be a fuzzy point/singleton in X and α be a fuzzy set in X. Then

- (i) $x_r \in \alpha$ iff $r < \alpha(x)$ when $r \in (0,1)$.
- (ii) $x_r \in \alpha$ iff $r < \alpha(x)$ when $r \in (0,1)$ and $\alpha(x) = 1$

when r = 1

(iii) $x_n \leq \alpha$ iff $r \leq \alpha(x)$ and $r \in (0,1]$.

^{*}Present Address: Department of Mathematics, Faculty of Science, B.H.U., Varanasi-221005, India.

We also write nhd, in short, for neighbourhood. Let I = [0,1]. If $\alpha \in I$, then α shall denote the α -valued constant fuzzy set also. We write l_A , D(X), G_f and E(f,g) to denote the characteristic function of $A \subseteq X$, diagonal of X, graph of f and equalizer of f, g respectively $(f,g:X \rightarrow Y)$.

If d: $X \rightarrow X \times X$ is the diagonal mapping then $d(\alpha) = \alpha 1_{D(X)}$, $\forall \alpha \in I$.

2. Fuzzy Regularity Concepts

We begin by giving a list of seven previously introduced fuzzy regularity concepts plus a new ene (see def. 2.1(a)) which we additionally propose. The seven previously introduced concepts are due to Hutton and Reilly [6], Admadjevic [2], Sarkar [13], Ghanim et al. [5], Malghan and Benchalli [11], Wang [18] and Ali [1]. As all the eight concepts would appear to be qualified for being named "fuzzy regularity concepts", we shall presently distinguish them by labelling them as FR(i)..., FR(viii).

Definition 2.1. An fts (X,t) is called

- (a) <u>FR(i)</u> iff for each fuzzy point x_r and closed fuzzy set α with $x_r \in co \ \alpha$, $\exists \ \lambda$, $\mu \in t$ s.t. $x_r \in \lambda$, $\alpha \leq \mu$ and $\lambda \leq co \ \mu$.
- (b) <u>FR(11)</u> iff each $\lambda \in t$ is a union of open fuzzy sets μ_{j}^{1S} s.t. $\bar{\mu}_{j} \leq \lambda$, for each j [6].
- (c) <u>FR(iii)</u> iff for each fuzzy singleton x_r and strong nhd λ of x_r , \exists a strong nhd μ of x_r s.t. $\overline{\mu} \leq \lambda$ [2].

- (d) <u>FR(iv)</u> iff for each fuzzy singleton x_r and closed fuzzy set α with $x_r \in co \alpha$, $\exists \lambda$, $\mu \in t$ s.t. $x_r \in \lambda$, $\alpha \leq \mu$ and $\lambda \leq co \mu$ [13].
- (e) FR(v) iff for each fuzzy singleton x_r and closed fuzzy set α with $x_r \le co \alpha$, $\exists \lambda$, $\mu \in t$ s.t. $x_r \le \lambda$, $\alpha \le \mu$ and $\lambda \le co \mu$ [5].
- (f) FR(vi) iff for each $x \in X$ and closed fuzzy set a with $\alpha(x) = 0$, $\exists \lambda$, $\mu \in t$ s.t. $\lambda(x) = 1$, $\alpha \le \mu$ and $\lambda \le co$ μ [11].
- (g) <u>FR(vii)</u> iff for each fuzzy singleton x_r and pseudocrisp closed set α with $x_r \wedge \alpha = 0$, $\alpha \neq 0$, β R-nhds λ of x_r and μ of α s.t. $\lambda \vee \mu = 1$ [18].
- (h) FR(viii) iff for each fuzzy singleton x_r and closed fuzzy set α with x_r q co α , $\exists \ \lambda, \ \mu \in t$ s.t. x_r q λ , $\alpha \leq \mu$ and $\lambda \not \in \mu$ [1].

Theorem 2.1. The following implications hold among the fuzzy regularity concepts FR(i),.....FR(viii).

 $FR(v) \rightarrow FR(iii) \Leftrightarrow FR(iv) \rightarrow FR(i) \Leftrightarrow FR(ii) \Leftrightarrow FR(viii)$ FR(vi)

Furthermore, no other implications exist among FR(i),...., FR(viii).

Theorem 2.2. For an fts (X,t), the following are equivalent:

- (a)(i) (X,t) is FR(i) (FR(iv) or FR(v))
 - (ii) \forall fuzzy point (singleton) x_r and $\lambda \in t$ with $x_r \in \lambda$ ($x_r \in \lambda$ or $x_r \leq \lambda$), $\exists \mu \in t$ s.t. $x_r \in \mu$ ($x_r \in \mu$ or $x_r \leq \mu$) and $\overline{\mu} \leq \lambda$.

- (iii) Each fuzzy point (singleton) has a local base of closed nhds.
 - (iv) Each fuzzy point (singleton) has a local subbase of closed nhds.
- (b)(i) (X,t) is FR(vi).
 - (ii) $\forall x \in X$ and $\lambda \in t$ with $\lambda(x) = 1$, $\exists \mu \in t$ s.t. $\mu(x) = 1$ and $\overline{\mu} \leq \lambda$.
 - (iii) Each crisp singleton has a local base of closed nhds.
 - (iv) Each crisp singleton has a local subbase of closed nhds.
- (c)(i) (X,t) is FR(vii)
 - (ii) \forall fuzzy singleton x_r and pseudocrisp closed set $\alpha \neq 0$ with $x_r \land \alpha = 0$, \exists open Q-nhds λ of x_r and μ of α s.t. $\lambda \land \mu = 0$.
- Theorem 2.3. FR(i) property is initial and hence productive and hereditary.

3. Some Weaker Separation Axioms

Following the style of fuzzy T_o -ness introduced and studied by lower and Srivastava [10] (which is categorically right), we introduce here the concepts of fuzzy T_1 , fuzzy T_2 , fuzzy R_o , fuzzy R_1 and fuzzy regular spaces and discuss their properties.

Definition 3.1. An fts (X,t) is called

(a) FT_0 iff $\forall x, y \in X, x \neq y, \exists \lambda \in t$ s.t. either $\lambda(x) > \lambda(y)$ or $\lambda(y) > \lambda(x)$ [10].

- (b) FT_1 iff $\forall x, y \in X, x \neq y, \exists \lambda, \mu \in t \text{ s.t. } \lambda(x) > \lambda(y)$ and $\mu(y) > \mu(x)$.
- (c) FT_2 iff $\forall x, y \in X, x \neq y, \exists \lambda, \mu \in t \text{ s.t. } \lambda(x) > \lambda(y), \mu(y) > \mu(x)$ and $\lambda \wedge \mu = 0$.
- (d) FR_0 iff $\forall x, y \in X, x \neq y$, whenever $\exists \lambda \in t$ with $\lambda(x) > \lambda(y)$ then $\exists \mu \in t$ with $\mu(y) > \mu(x)$.
- (e) $\frac{FR_1}{\alpha(x)}$ iff $\forall x, y \in X, x \neq y$, whenever $\exists \alpha \in t$ with $\alpha(x) \neq \alpha(y)$, then $\exists \lambda, \mu \in t$ s.t. $\lambda(x) > \lambda(y), \mu(y) > \mu(x)$ and $\lambda \wedge \mu = 0$ or equivalently, $\lambda(x) > 0$, $\mu(y) > 0$ and $\lambda \wedge \mu = 0$.
- (f) FR iff $\forall x \in X$ and closed fuzzy set α with $cc \alpha(x) > 0$, $\exists \lambda, \mu \in t$ s.t. $\lambda(x) > 0$, $\alpha \leq \mu$ and $\lambda \leq co \mu$.

It turns out that \mathbf{FT}_2 -ness is equivalent to fuzzy \mathbf{T}_2 -ness of Katsaras [7].

Clearly, $FT_2 \rightarrow FT_1 \rightarrow FT_0$ and $FR_1 \rightarrow FR_0$.

and ER

Theorem 3.1. FT₁, FR₀, FR₁/properties are good extensions (in the sense of Lowen [8]) of their topological counterparts.

It was shown respectively in [10] and [15] that ${\rm FT_0}$ and ${\rm FT_0}$ properties are good extensions.

- Theorem 3.2. Consider the following statements in an fts (X,t):
- (i) D(X), the diagonal of X is fuzzy closed in $(X \times X, t \times d)$, where d is the discrete fuzzy topology on X.

- (ii) $\{x\}, \forall x \in X$, is fuzzy closed in (X,t).
- (iii) (X,t) is FT_{γ} .
- Then $(i) \Leftrightarrow (ii) \Rightarrow (iii) \text{ and } (iii) \Rightarrow (ii).$
- Theorem 3.3. For topologically generated fuzzy topological spaces, the three statements of Th. 3.2 are equivalent.
- Theorem 3.4. A topological space (X,T) is compact T_1 iff (X, ω (T)) is fuzzy compact FT_1 (Fuzzy compactness is in the sense of [8].
- Theorem 3.5 For an fts (X,t), the following statements are equivalent:
- (a)(i) (X,t) is FT_1
 - (ii) (X,t) is FT_0 and FR_0 .
- (b)(i) (X,t) is FT₂
 - (ii) (X,t) is FT_1 and FR_1
- (iiii) (X,t) is FT_0 and FR_1
- (c)(i) (X,t) is FR
 - (ii) $\forall x \in X \text{ and } \lambda \in t \text{ with } \lambda(x) > 0, \exists \mu \in t \text{ s.t. } \mu(x) > 0$ and $\overline{\mu} \leq \lambda$.
- Theorem 3.6. FRo, FR1 and FR properties are initial.
- Theorem 3.7. FT₁, FR₀, FR₁ and FR properties are productive and hereditary.

4. α - Hausdorffness

Several fuzzy Hausdorffness concepts have appeared in the literature so far (a few such significant concepts, together with their comparison, are mentioned in [15] and [17]. In [3], K.K. Azad introduced a fuzzy Hausdorffness concept as follows: An fts (X,t) is called <u>fuzzy Hausdorff</u>: iff d(X) is $t \times t - closed$ $\forall X \in I^X$.

Evidently fuzzy Hausdorffness of [3] is also fuzzy Hausdorff in the sense of Srivastava et al. [16](equivalent to the fuzzy Hausdorffness concepts of [9] and [12]); the converse is false.

Considering any discrete topological space as a fuzzy topological space and the 'Fort topological space', we can show respectively that Azad's fuzzy Hausdorffness neither generalizes usual Hausdorffness nor is a good extension of Hausdorffness.

We also observe that the seemingly useful theorem 4.11 in [3], which involves fuzzy Hausdorffness of Azad, survives if his fuzzy Hausdorffness is replaced by the weaker fuzzy Hausdorffness concept given in [16].

To repair the se unpleasant aspects of Azad's concept, we introduce here another related fuzzy Hausdorffness concept, viz. $\underline{\alpha}$ - Hausdorffness, which possesses many pleasing properties.

From now onwards, $\alpha \in (0,1]$ and is fixed.

<u>Definition</u> 4.1. An fts (X,t) is said to be <u> α </u>-Hausdorff iff $\forall r$, $s \in (0,1)$ and \forall distinct x, $y \in X$, $\exists \lambda$, $\mu \in t$ s.t. $\lambda(x) > r$,

 $\mu(y) > s$ and $\lambda \wedge \mu \le 1 - \alpha$.

(A similar name for a different fuzzy Hausdorffness concept has also been used by Rodabangh [14]).

Theorem 4.1. Consider the following statements for an fts (X_1, t_1) :

- (i) $\alpha l_{D(X_1)}$ is $t_1 \times t_1 closed$.
- (ii) If (X_2, t_2) is an fts and f: $(X_2, t_2) \rightarrow (X_1, t_1)$ is fuzzy continuous then αl_{G_f} is $t_2 \times t_1$ -closed.
- (iii) If (X_2, t_2) is an fts and f,g: $(X_2, t_2) \rightarrow (X_1, t_1)$ are fuzzy continuous then a $l_{E(f,g)}$ is t_2 closed.
- (iv) (X_1, t_1) is $\underline{\alpha}$ Hausdorff.

Then

- (a) In Chang's fuzzy topologies
 (i) ⇔ (ii) ⇔ (iv) and (iv) ⇒ (iii)
- (b) In lowen's fuzzy topologies(i) ⇔ (ii) ⇔ (iv).

Theorem 4.2. (i) $\underline{\alpha}$ - Hausdorffness is a good extension of its topological counterpart.

(ii) If (X,t) is $\underline{\alpha}$ - Hausdorff then (X, i(t)) must be Hausdorff; the converse is not true. (For the converse, consider the counterexample, last but one, of $\lceil 8 \rceil$).

Theorem 4.3. α - Hausdorffness is productive and hereditary.

REFERENCES

- 1. D.M. Ali, Quasi-fuzzy regular spaces, Proc. Math. Soc., Banaras Hindu University (to appear).
- 2. D. Adnadjevic, Separation properties of F-spaces, Math. Vesnik 6 (1982) 1-8.
- 3. K.K. Azad, Fuzzy Hausdorff spaces and fuzzy perfect mappings, J. Math. Anal. Appl. 82 (1981) 297-305.
- 4. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- 5. M.H. Ghanim, E.E. Kerre and A.S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984) 189-202.
- 6. B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980) 93-104.
- 7. A.K. Katsaras, Ordered fuzzy topological spaces, J. Math. Anal. Appl. 84(1981) 44-58.
- 8. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621-633.
- 9. _____, Compact Hausdorff fuzzy topological spaces are topological, Top. Appl. 12 (1981) 65-74.
- 10. R. Lowen and A.K. Srivastava, FTS_o: The epireflective hull of the Sierpinski object in FTS (Submitted).
- 11. S.R. Malghan and S.S. Benchalli, On fuzzy topological spaces, Glasnik Mate. 16 (1981) 313-325.
- 12. P.M. Pu and Y.M. Liu, Fuzzy topology I. Reighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. and Appl. 76 (1980) 571-599.

- 13. M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981) 384-394.
- 14. S.E. Rodabaugh, The Hausdorff separation axiom for fuzzy topological spaces, Top. Appl. 11 (1980) 319-334.
- 15. A.K. Srivastava and D.M. Ali, A comparison of some FT₂ concepts, Fuzzy Sets and Systems (to appear).
- 16. R. Srivastava, S.N. Lal and A.K. Srivastava, Fuzzy
 Hausdorff topological spaces, J. Math. Anal. Appl.
 81 (1981) 497-506.
- 17. R. Srivastava and A.K. Srivastava, On fuzzy Hausdorffness concepts, Fuzzy Sets and Systems 17 (1985) 67-71.
- 18. G. Wang, A new fuzzy compactness diffined by fuzzy nets, J. Math. Anal. Appl. 94 (1983) 1-23.
- 19. R.H. Warren, Neighbourhood, bases and continuity in fuzzy topological spaces, Rocky Maountain J. Math. 8 (1978) 459-470.

.