ON FUZZY REGULARITY AND SOME WEAKER SEPARATION AXIOMS IN FTS Dewan Muslim ALI* Department of Mathematics Rajshahi University Rajshahi, Bangladesh #### 1. Introduction This paper is a summery of our research work. In Section 2, we give a complete comparison of fuzzy regularity concepts presently in use and obtain their characterizations, in Section 3, we introduce and study weaker forms of fuzzy T_1 , fuzzy T_2 , fuzzy T_0 , fuzzy T_1 and fuzzy regular spaces and in Section 4, we note some shortcomings of the fuzzy Hausdorffness concept of Azad [3] and introduce a related concept of fuzzy Hausdorffness, viz. α -Hausdorffness, which possesses many pleasing properties. We use mainly Chang's topology [4] in this paper. We also use the following facts: Let $\mathbf{x_r}$ be a fuzzy point/singleton in X and α be a fuzzy set in X. Then - (i) $x_r \in \alpha$ iff $r < \alpha(x)$ when $r \in (0,1)$. - (ii) $x_r \in \alpha$ iff $r < \alpha(x)$ when $r \in (0,1)$ and $\alpha(x) = 1$ when r = 1 (iii) $x_n \leq \alpha$ iff $r \leq \alpha(x)$ and $r \in (0,1]$. ^{*}Present Address: Department of Mathematics, Faculty of Science, B.H.U., Varanasi-221005, India. We also write nhd, in short, for neighbourhood. Let I = [0,1]. If $\alpha \in I$, then α shall denote the α -valued constant fuzzy set also. We write l_A , D(X), G_f and E(f,g) to denote the characteristic function of $A \subseteq X$, diagonal of X, graph of f and equalizer of f, g respectively $(f,g:X \rightarrow Y)$. If d: $X \rightarrow X \times X$ is the diagonal mapping then $d(\alpha) = \alpha 1_{D(X)}$, $\forall \alpha \in I$. ### 2. Fuzzy Regularity Concepts We begin by giving a list of seven previously introduced fuzzy regularity concepts plus a new ene (see def. 2.1(a)) which we additionally propose. The seven previously introduced concepts are due to Hutton and Reilly [6], Admadjevic [2], Sarkar [13], Ghanim et al. [5], Malghan and Benchalli [11], Wang [18] and Ali [1]. As all the eight concepts would appear to be qualified for being named "fuzzy regularity concepts", we shall presently distinguish them by labelling them as FR(i)..., FR(viii). # Definition 2.1. An fts (X,t) is called - (a) <u>FR(i)</u> iff for each fuzzy point x_r and closed fuzzy set α with $x_r \in co \ \alpha$, $\exists \ \lambda$, $\mu \in t$ s.t. $x_r \in \lambda$, $\alpha \leq \mu$ and $\lambda \leq co \ \mu$. - (b) <u>FR(11)</u> iff each $\lambda \in t$ is a union of open fuzzy sets μ_{j}^{1S} s.t. $\bar{\mu}_{j} \leq \lambda$, for each j [6]. - (c) <u>FR(iii)</u> iff for each fuzzy singleton x_r and strong nhd λ of x_r , \exists a strong nhd μ of x_r s.t. $\overline{\mu} \leq \lambda$ [2]. - (d) <u>FR(iv)</u> iff for each fuzzy singleton x_r and closed fuzzy set α with $x_r \in co \alpha$, $\exists \lambda$, $\mu \in t$ s.t. $x_r \in \lambda$, $\alpha \leq \mu$ and $\lambda \leq co \mu$ [13]. - (e) FR(v) iff for each fuzzy singleton x_r and closed fuzzy set α with $x_r \le co \alpha$, $\exists \lambda$, $\mu \in t$ s.t. $x_r \le \lambda$, $\alpha \le \mu$ and $\lambda \le co \mu$ [5]. - (f) FR(vi) iff for each $x \in X$ and closed fuzzy set a with $\alpha(x) = 0$, $\exists \lambda$, $\mu \in t$ s.t. $\lambda(x) = 1$, $\alpha \le \mu$ and $\lambda \le co$ μ [11]. - (g) <u>FR(vii)</u> iff for each fuzzy singleton x_r and pseudocrisp closed set α with $x_r \wedge \alpha = 0$, $\alpha \neq 0$, β R-nhds λ of x_r and μ of α s.t. $\lambda \vee \mu = 1$ [18]. - (h) FR(viii) iff for each fuzzy singleton x_r and closed fuzzy set α with x_r q co α , $\exists \ \lambda, \ \mu \in t$ s.t. x_r q λ , $\alpha \leq \mu$ and $\lambda \not \in \mu$ [1]. Theorem 2.1. The following implications hold among the fuzzy regularity concepts FR(i),.....FR(viii). $FR(v) \rightarrow FR(iii) \Leftrightarrow FR(iv) \rightarrow FR(i) \Leftrightarrow FR(ii) \Leftrightarrow FR(viii)$ FR(vi) Furthermore, no other implications exist among FR(i),...., FR(viii). Theorem 2.2. For an fts (X,t), the following are equivalent: - (a)(i) (X,t) is FR(i) (FR(iv) or FR(v)) - (ii) \forall fuzzy point (singleton) x_r and $\lambda \in t$ with $x_r \in \lambda$ ($x_r \in \lambda$ or $x_r \leq \lambda$), $\exists \mu \in t$ s.t. $x_r \in \mu$ ($x_r \in \mu$ or $x_r \leq \mu$) and $\overline{\mu} \leq \lambda$. - (iii) Each fuzzy point (singleton) has a local base of closed nhds. - (iv) Each fuzzy point (singleton) has a local subbase of closed nhds. - (b)(i) (X,t) is FR(vi). - (ii) $\forall x \in X$ and $\lambda \in t$ with $\lambda(x) = 1$, $\exists \mu \in t$ s.t. $\mu(x) = 1$ and $\overline{\mu} \leq \lambda$. - (iii) Each crisp singleton has a local base of closed nhds. - (iv) Each crisp singleton has a local subbase of closed nhds. - (c)(i) (X,t) is FR(vii) - (ii) \forall fuzzy singleton x_r and pseudocrisp closed set $\alpha \neq 0$ with $x_r \land \alpha = 0$, \exists open Q-nhds λ of x_r and μ of α s.t. $\lambda \land \mu = 0$. - Theorem 2.3. FR(i) property is initial and hence productive and hereditary. ### 3. Some Weaker Separation Axioms Following the style of fuzzy T_o -ness introduced and studied by lower and Srivastava [10] (which is categorically right), we introduce here the concepts of fuzzy T_1 , fuzzy T_2 , fuzzy R_o , fuzzy R_1 and fuzzy regular spaces and discuss their properties. ## Definition 3.1. An fts (X,t) is called (a) FT_0 iff $\forall x, y \in X, x \neq y, \exists \lambda \in t$ s.t. either $\lambda(x) > \lambda(y)$ or $\lambda(y) > \lambda(x)$ [10]. - (b) FT_1 iff $\forall x, y \in X, x \neq y, \exists \lambda, \mu \in t \text{ s.t. } \lambda(x) > \lambda(y)$ and $\mu(y) > \mu(x)$. - (c) FT_2 iff $\forall x, y \in X, x \neq y, \exists \lambda, \mu \in t \text{ s.t. } \lambda(x) > \lambda(y), \mu(y) > \mu(x)$ and $\lambda \wedge \mu = 0$. - (d) FR_0 iff $\forall x, y \in X, x \neq y$, whenever $\exists \lambda \in t$ with $\lambda(x) > \lambda(y)$ then $\exists \mu \in t$ with $\mu(y) > \mu(x)$. - (e) $\frac{FR_1}{\alpha(x)}$ iff $\forall x, y \in X, x \neq y$, whenever $\exists \alpha \in t$ with $\alpha(x) \neq \alpha(y)$, then $\exists \lambda, \mu \in t$ s.t. $\lambda(x) > \lambda(y), \mu(y) > \mu(x)$ and $\lambda \wedge \mu = 0$ or equivalently, $\lambda(x) > 0$, $\mu(y) > 0$ and $\lambda \wedge \mu = 0$. - (f) FR iff $\forall x \in X$ and closed fuzzy set α with $cc \alpha(x) > 0$, $\exists \lambda, \mu \in t$ s.t. $\lambda(x) > 0$, $\alpha \leq \mu$ and $\lambda \leq co \mu$. It turns out that \mathbf{FT}_2 -ness is equivalent to fuzzy \mathbf{T}_2 -ness of Katsaras [7]. Clearly, $FT_2 \rightarrow FT_1 \rightarrow FT_0$ and $FR_1 \rightarrow FR_0$. and ER Theorem 3.1. FT₁, FR₀, FR₁/properties are good extensions (in the sense of Lowen [8]) of their topological counterparts. It was shown respectively in [10] and [15] that ${\rm FT_0}$ and ${\rm FT_0}$ properties are good extensions. - Theorem 3.2. Consider the following statements in an fts (X,t): - (i) D(X), the diagonal of X is fuzzy closed in $(X \times X, t \times d)$, where d is the discrete fuzzy topology on X. - (ii) $\{x\}, \forall x \in X$, is fuzzy closed in (X,t). - (iii) (X,t) is FT_{γ} . - Then $(i) \Leftrightarrow (ii) \Rightarrow (iii) \text{ and } (iii) \Rightarrow (ii).$ - Theorem 3.3. For topologically generated fuzzy topological spaces, the three statements of Th. 3.2 are equivalent. - Theorem 3.4. A topological space (X,T) is compact T_1 iff (X, ω (T)) is fuzzy compact FT_1 (Fuzzy compactness is in the sense of [8]. - Theorem 3.5 For an fts (X,t), the following statements are equivalent: - (a)(i) (X,t) is FT_1 - (ii) (X,t) is FT_0 and FR_0 . - (b)(i) (X,t) is FT₂ - (ii) (X,t) is FT_1 and FR_1 - (iiii) (X,t) is FT_0 and FR_1 - (c)(i) (X,t) is FR - (ii) $\forall x \in X \text{ and } \lambda \in t \text{ with } \lambda(x) > 0, \exists \mu \in t \text{ s.t. } \mu(x) > 0$ and $\overline{\mu} \leq \lambda$. - Theorem 3.6. FRo, FR1 and FR properties are initial. - Theorem 3.7. FT₁, FR₀, FR₁ and FR properties are productive and hereditary. # 4. α - Hausdorffness Several fuzzy Hausdorffness concepts have appeared in the literature so far (a few such significant concepts, together with their comparison, are mentioned in [15] and [17]. In [3], K.K. Azad introduced a fuzzy Hausdorffness concept as follows: An fts (X,t) is called <u>fuzzy Hausdorff</u>: iff d(X) is $t \times t - closed$ $\forall X \in I^X$. Evidently fuzzy Hausdorffness of [3] is also fuzzy Hausdorff in the sense of Srivastava et al. [16](equivalent to the fuzzy Hausdorffness concepts of [9] and [12]); the converse is false. Considering any discrete topological space as a fuzzy topological space and the 'Fort topological space', we can show respectively that Azad's fuzzy Hausdorffness neither generalizes usual Hausdorffness nor is a good extension of Hausdorffness. We also observe that the seemingly useful theorem 4.11 in [3], which involves fuzzy Hausdorffness of Azad, survives if his fuzzy Hausdorffness is replaced by the weaker fuzzy Hausdorffness concept given in [16]. To repair the se unpleasant aspects of Azad's concept, we introduce here another related fuzzy Hausdorffness concept, viz. $\underline{\alpha}$ - Hausdorffness, which possesses many pleasing properties. From now onwards, $\alpha \in (0,1]$ and is fixed. <u>Definition</u> 4.1. An fts (X,t) is said to be <u> α </u>-Hausdorff iff $\forall r$, $s \in (0,1)$ and \forall distinct x, $y \in X$, $\exists \lambda$, $\mu \in t$ s.t. $\lambda(x) > r$, $\mu(y) > s$ and $\lambda \wedge \mu \le 1 - \alpha$. (A similar name for a different fuzzy Hausdorffness concept has also been used by Rodabangh [14]). Theorem 4.1. Consider the following statements for an fts (X_1, t_1) : - (i) $\alpha l_{D(X_1)}$ is $t_1 \times t_1 closed$. - (ii) If (X_2, t_2) is an fts and f: $(X_2, t_2) \rightarrow (X_1, t_1)$ is fuzzy continuous then αl_{G_f} is $t_2 \times t_1$ -closed. - (iii) If (X_2, t_2) is an fts and f,g: $(X_2, t_2) \rightarrow (X_1, t_1)$ are fuzzy continuous then a $l_{E(f,g)}$ is t_2 closed. - (iv) (X_1, t_1) is $\underline{\alpha}$ Hausdorff. Then - (a) In Chang's fuzzy topologies (i) ⇔ (ii) ⇔ (iv) and (iv) ⇒ (iii) - (b) In lowen's fuzzy topologies(i) ⇔ (ii) ⇔ (iv). Theorem 4.2. (i) $\underline{\alpha}$ - Hausdorffness is a good extension of its topological counterpart. (ii) If (X,t) is $\underline{\alpha}$ - Hausdorff then (X, i(t)) must be Hausdorff; the converse is not true. (For the converse, consider the counterexample, last but one, of $\lceil 8 \rceil$). Theorem 4.3. α - Hausdorffness is productive and hereditary. #### REFERENCES - 1. D.M. Ali, Quasi-fuzzy regular spaces, Proc. Math. Soc., Banaras Hindu University (to appear). - 2. D. Adnadjevic, Separation properties of F-spaces, Math. Vesnik 6 (1982) 1-8. - 3. K.K. Azad, Fuzzy Hausdorff spaces and fuzzy perfect mappings, J. Math. Anal. Appl. 82 (1981) 297-305. - 4. C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190. - 5. M.H. Ghanim, E.E. Kerre and A.S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984) 189-202. - 6. B. Hutton and I. Reilly, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems 3 (1980) 93-104. - 7. A.K. Katsaras, Ordered fuzzy topological spaces, J. Math. Anal. Appl. 84(1981) 44-58. - 8. R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621-633. - 9. _____, Compact Hausdorff fuzzy topological spaces are topological, Top. Appl. 12 (1981) 65-74. - 10. R. Lowen and A.K. Srivastava, FTS_o: The epireflective hull of the Sierpinski object in FTS (Submitted). - 11. S.R. Malghan and S.S. Benchalli, On fuzzy topological spaces, Glasnik Mate. 16 (1981) 313-325. - 12. P.M. Pu and Y.M. Liu, Fuzzy topology I. Reighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. and Appl. 76 (1980) 571-599. - 13. M. Sarkar, On fuzzy topological spaces, J. Math. Anal. Appl. 79 (1981) 384-394. - 14. S.E. Rodabaugh, The Hausdorff separation axiom for fuzzy topological spaces, Top. Appl. 11 (1980) 319-334. - 15. A.K. Srivastava and D.M. Ali, A comparison of some FT₂ concepts, Fuzzy Sets and Systems (to appear). - 16. R. Srivastava, S.N. Lal and A.K. Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981) 497-506. - 17. R. Srivastava and A.K. Srivastava, On fuzzy Hausdorffness concepts, Fuzzy Sets and Systems 17 (1985) 67-71. - 18. G. Wang, A new fuzzy compactness diffined by fuzzy nets, J. Math. Anal. Appl. 94 (1983) 1-23. - 19. R.H. Warren, Neighbourhood, bases and continuity in fuzzy topological spaces, Rocky Maountain J. Math. 8 (1978) 459-470.