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This paper is the summary of "Abstri

Sets®™, the abstract integrals on the f

duced, and some properties and transfor

abstract integrals on the fuzzy sets ay

hina
ct Integrals on Fuzzy

zzy sets are intro-

mation theorems of the

e discussed, and.the

Fatou's Lemmas and the Lebesgue's boun
rems of a sequence of the abstract int

abstract integral studied in the paper

on the fuzzy set about the integral g ix

measure theory, and it is different fr
integral presented in[4].

Throughout this paper, let X be a n
the class of all fuzzy subsets of X,
algebra, and M={f; f:X—=(-00, 00), {x;1
the set of all measurable functions on
(ef.[31), and we make the convention:

1%, Abstract Integral

jed convergenoe theo-
pgrals are proved. The
is a generalization

ren in the classical

m the Sugeno's fuzzy

empty set, &(X) be

c F(X) be a fuzzy o-
(x)» «}e T ,eet0,00} be
(X, %), B'={f;>0, LM}
D-0o= O,

LS

|

of Nonnegative Measurable }

unctions

Definitionl,1 Let p:%—[0,0] be a
it is called o-additive, if we have n

whenever {4 led, and Ai“’%j”’ isJe

fuzzy measure (cf,[3])

| 00 _% (A
n&én) 215(-11)

Nn=

Tn the paper, we shall always assume that np is a o~addi-

tive fuzzy measure,
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t,2]

Definitionl.2 A functionm £ is ¢

E ¢ B(M)

are some disjoint sets E,,---

smallest classical o-algebra such that

are measurable on it., Evidently, B(¥)<

alled simple, if there
(where B(M) is the
all functions in J

n
%) with UE

{4

b4

1%

and some real numbers o¢1 g

ryoly € (=00,
f(x)zi%loti-Ei(x), for any x¢X, where

Evidently, an arbitrary simple fun
able,

. 1,
Propositionl .3

2]
If feM*, then

i£,3 of simple functions :Ln M*, such
efinitionl, 4 Let £ _zzu Ese B b

D

Ac% the mtegral of £ on A with resp
by ngdp, Zoti ‘(A NE;) .

It follows easily from the additiv
unambiguously defined,

Definition1,.5 Let feM', A¢F. The
respect to g is defined by

SAde% sup{jgsdu; og¢ssf, s is a si

Theoreml .6 Let fe)*, {f cl' be a s

functions. If f /£, then | R

Evidently, when ¢ is a classical o-
classical integral given in[1,2].

Theoremi,7 Let f,geﬁ*, A,Be %.
(1) 1f p(A)= 0 , then jAde =
(2) If £<g, then {,fdp <f,gdp

“-e

-e

= 11mj’
n—-+*00<

i=1
), such that
1 if eri

B, ()=

tion must be measur-
lere exists a sequence

that :t‘n/ f .

» a simple function,

et to p is defined

Ly of p that {,fdy is
ntegral of £ on A with

ple function},

equence of simple
AfndE ¢

plgebra, [,fdp is the
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(3) If AcB, then § pfdp < ngdg ;
(4)§,(£+g)ap =f,fdp + [yedp
(B)IAafdg = afAfdg , ado, 00)
(6) IAad;g = a-E(A), afo, 0) 3
(7) If AnB=¢p, then Aupfau =jAfdg +‘E§fdm
(8) fy (£ ve)ag »(,fdnviyedn 3
(9) Jo(£A )R < pTauA(ygaR 5
(10)§ gugfdn > Afdgvfgfdg 3

(113§ yopfan < aTaRApTdR

-e

o% Abstract Integrals of Measurablle Functions

If feM , then we denote t*-max(f,0) , £ =max(-f,0).

Definition2,1 Let feff , Acf, if SAJE+dE<ooor Jpf dp<oo,
then we say the integral of f on A with respect to n is
existent, and the integral of f on A with respect to u is
defined by f AT :fgf*dg -Jptay .

If UAde[(oo, then we say f is integrable,

Evid;ntly, if % is a classical o-algebra, then fafap is
the integral presented in[1,2]. B

Theorem?,2 Let f,geM , g,ﬁ,e%, and the integrals of f amnd
g on A and B with respect to p be exigtent,
(1) If m(A)= O, then SAde =0 3
(2) If £<g, then fAmE sSAgdg ;
(3) §,afdg = af,fdp , ae (-w, 0);
(4) It g is int';grable, then {,(f+g)dy is existent, and

§ A(ﬁ-g)dg ={pfap + [ gdn , ‘and the pfore, if f and g are

P~ o~

integrable, then f+g is integrabl

-o
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(5) 1f pupfdR is existent and AnB=
5A”§fdp, SSAde +S’Efdg :

then

(6) |§ Afdg‘s 5A|f|dg , and f is integrable if and only if |f|

is integrable ;

(7) 1If tfig|gland g is integrable, them f is integrable,

Proposition2.,3 If g<£f, and g is integrable, then fAde

is existent,

Theorem?,4(Mean Value Theorem) Let

ge%, f-|g| and |g| be integrable, if as<
ce[a,b], such that jAf|g| dg = cf, g4
Corollary2.5 Let a,be(-00,00), felf

f,gel, a,be(-09, 00),

<b, then there exists

| $ ol

*

Aed:, and f Be
o~

integrable, if agf €b, then there exfists ce[a,b], such

that {,fap = c.p(A).

. 3%, Transformation The

Irems

Definition3.1 For any given Ae%, b
1*(E) & p(ANE), for any E€B(E) (ci

then w* is a classical measure on (X,

measure induced by p and A,

Theorem3,.2(Transformation Theorem)

ve define
F, Definition1,2),
B(M)), we call w* a

If fefi, Ae%, then

Jptap =fyfdw*, where [, fdu* is the classical integral of

f given in[1,2].

Theorem3.3 (Transformation Theorem)

If Aef, feM ,

S(A)={x; A(x)>0}e®R(M), then {,fdp =SS (3)fdu*, where

§ 5(a)fdw* is the classical integral of

f given in[1,2].
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4*, Convergence Theorems of

M

Sequence

of Measurable Function
We write S(A)={x; A(x)>0%.
(1) If lim £ (x)= £(x) for any xeS(A
n—00

converges to f everywhere on A , and
A
(2) If there exists E€ B(M) with w*(E
on S(ANE®, then we say {f } converge;

a.e,
where on A , and denote it by f—f

-
?

(3) 1f E(;%n{lfn—f\)ﬁ})"’O for any giv

ifn'i converges in fuzzy measure B to
B

by f—f on As

(h)ifn'f is said to mean converge to

jylfidgeoo , and if n}.igfé\fn-ﬂdg =

Theorem,2 Let {f ,flcl, Aed, S(

e,
(1) fn—’f on A if and only if Acix; 1
7} u*
(2) f7—=f on A if and only if f—=f on
u*

if and only if fn—vf on

A

o~

(3) fr-lgvf on
Theorem4,3 Let {f ,flclM, AeZ . Iy

to f on A, then f—=f on A,

Theoremk,t (Riesz's Theorem) Let {]

s(p)e B(M). If :t‘r-l-g"f on A, then there

a.e,
£} of {f,}, such that fo—= 1 on A.

(8)e B(B).
l; then we say {f.}
e.

= 0, such that fﬁ-—»f

Co
note it by fﬁ—'f on

to f almost every-
on As

m ¢>o0, then we say

f on A, and denote it

on A, if §,1£1dr<0o,
)

A)e B(H) .

() —=2(x), xexl ;

s(a) s

X

{f,} mean converges

n’f}c ﬂ’ Ae%’
exists a subsequence
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Theorem4,5 (Lebesgue's Theorem) Let

a.e.

S(A)e (M), R(A)< 0. If £——of on 4,

5%, Convergence Theorems of 5

{fn,f} cuﬂ’ Ae % ’
then f—f on A.

equence

of Abstract Integrals

Theorem5,1(Monotone Convergence The
S(A)e B(M). If if }c.m" is an increasi

A.e,

f;—=foni (respe. f—-—-f on A), then

Theorem5,.2(Monotone Convergence The

S(a)eRBR(M), {fn}cg be an increasing s

integrable function . If £f3g and f b3
a.e,

e.
f—=f on 4 A (resp. fo—f on A ), ther

In the following, we write

lim
fee D

=

sup(inf a,) 1‘1‘
n i»n i ! an

Theorem5,3(Faton's Lemma) Let {g,f
If g<f, n=1,2,+--, and if g is integ

SA(%},‘; £)dp g %{Af

Theorem5,4(Faton's Lemma) Let {g,f
. If f &g, n=1,2,+, and if g is int

WEEn w9 > I8yt

prem) Let fel', Ae,

ng sequence, and if
lim IAf dp = IAfdg .

’ f.\:"%,

quence, geM be a

orem) Let feM

g, ‘4r1"—"-1,2,".’1 and if
_]:i.a’ ’A,fndu =[Afdp, .

inf(sup a i)
i»n

tel, AR, S(A)R(M.
able, then

dp .

N, Ac%, S(A)e B
grable, then

dp .

Theoremb,.%(Lebesgue's Bounded Conv
Let {f ,fi<k, Ae¢f, S(A)e@B(M), and g

I l¢lgl yace. (e({lfi>1g1} )= 0 ), and if]

f is integrable, and 1lim fAIfn-fldg =

rgence Theorem)

eM be integrable, If
a,e,

f—f on 4, then

0 , and therefore,
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n"“ ~

Theoremb ,6 (Lebesgue's Bounded Convgrgence Theorem)
Let {f ,f}cM , AeR, and gell be integpable. If |f |¢|gf a.e.

, and if f{%f on 4 , then f is integrable, and

o~

1:.mfA|f -f|dg = 0, and therefore,nligg;
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