A NOTE ON PIASECKI'S P-MEASURE

Zbigniew Świtalski

Os. Chrobrego 35/49

60-681 Poznań, Poland

We announce here a theorem on representation of Piasecki's P-measure by a usual probability measure on a 6-Boolean algebra.

Key word : Fuzzy probability measure.

Let 6 be a family of fuzzy subsets of a universum Ω /i.e. mappings $\Omega \longrightarrow [0,1]$ / containing 0_{Ω} , 1_{Ω} , not containing ${1 \choose 2}_{\Omega}$ and closed under countable union and complement. Such families are called by Piasecki [1] soft fuzzy 6-algebras.

Definition [1]. By W-empty fuzzy subset of Ω we will mean a mapping $\mu: \Omega \longrightarrow [0,1]$ such that $\mu \leqslant \mu'/\mu' = 1 - \mu/$.

Definition [1]. By W-universum in Ω we will mean a mapping $\mu: \Omega \longrightarrow [0,1]$ such that $\mu \geqslant \mu'$.

Definition [1]. Two fuzzy subsets μ and ν of Ω are called W-separated sets if $\mu \leqslant \nu'$.

Definition [1]. Let 6 be a soft fuzzy 6-algebra. A mapping $p: 6 \longrightarrow R^+ \cup \{0\}$ is called a P-measure on 6 if

 $1/p(\mu) = 1$ for any W-universum μ ,

2/ $p(\bigcup_{n} \mu_{n}) = \sum_{n} p(\mu_{n})$ for each countable family of pairwise W-separated sets from 6.

The representation theorem for the P-measure runs as follows.

Theorem. For any soft fuzzy 6-algebra 6 and any P-measure p on 6 there exists a 6-Boolean algebra A, a 6-De Morgan algebras homomorphism $h: 6 \longrightarrow A$ and a usual probability measure $p_4: A \longrightarrow R^+ \cup \{0\}$ such that the following diagram commutes

<u>Proof.</u> We will give only a brief sketch of the proof. Let W_6 be the class of all W-empty subsets from G and let \sim denotes the following relation in G:

The relation \sim is a tolerance on \mathcal{F} /reflexive and symmetric/ and may be not transitive. Let \approx be the transitive closure of \sim . From the results of Piasecki [1] it can be checked /this part of the proof is omitted here/ that \approx is consistent with the operations of taking countable sum /intersection/ and complement. We have also $\mu \vee \mu' \approx 1$, $\mu \wedge \mu' \approx 0$ and

$$\mu \approx \nu \implies p(\mu) = p(\nu)$$
.

Hence $A = 6/\approx$ is a 6-Boolean and, if we define $h(\mu) = [\mu]$, $p_1([\mu]) = p(\mu)$, then h is a 6-De Morgan algebras homomorphism, p_1 is a usual probability measure on A/i.e. $p_1(1) = 1$ and $p_1(\bigcup \mu_n) = \sum_{n} p_1(\mu_n)$ for any countable family μ_n of pairwise disjoint elements from A / and the diagram /1/ commutes. This ends the proof.

By the above theorem we can derive all the properties of P-measure established by Piasecki [1] in a very easy way. For example the continuity from below of p /Theorem 3.4. in [1] / is a consequence of continuity from below of p_1 and commutation of h with countable unions, namely

 $p(\bigcup_{n}\mu_{n}) = p_{1}h(\bigcup_{n}\mu_{n}) = p_{1}[\bigcup_{n}h(\mu_{n})] = \lim_{n\to\infty} p_{1}[h(\mu_{n})] = \lim_{n\to\infty} p(\mu_{n}).$ Other results of [1] can be obtained analogously with the help of /1/.

Reference

[1] K.Piasecki, Probability of fuzzy events defined as denumerable additivity measure, Fuzzy Sets and Systems 17/1985/ 271-284.