BOOLEAN LATTICE , FUZZY LATTICE, AND EXTENSION LATTICE

Wang Hongxu

Dept. of Basis. Liaoyang College of Petrochemistry CHINA

ABSTRACT

In this paper we introduced the concept of an extension lattice. We from the point of vien of theory of lattice study a contact and a difference between Boolean lattice, fuzzy lattice and an extension. Both a fuzzy lattice and a Boolean lattice are a bounded, but an extension lattice is unbounded. We proved a fuzzy lattice and proper sublattice of an extension lattice are isomorphic.

Keywords: The extension lattice.

I. PREPARATIVE KNOWLEDGE

First some concepts are listed as following:

A partially ordered set is a set P with a binary relation \leq , which is reflexive, antisymmetric, and transitive. Definition 1.1 A lattice is a set L of elements, with two binary operations \wedge and \vee which are idempotent, commutative, and associative and which satisfies the absorption laws. Definition 1.1' A lattice a partially odered set L of elements, with binary relation \leq , if it satisfies: For any two elements $\alpha, \beta \in L$, have $\alpha \vee \beta \in L$ and $\alpha \wedge \beta \in L$. May prove that definition 1.1 is equivalent to definition 1.1'.

A lattice (L, \vee, \wedge) is called distributive if in L the distributive laws hold.

A lattice (L, \vee, \wedge) is called a bounded if in L there is a maximum element 1 and minimum element 0. And for any $a \in L$, $0 \le a \le 1$ hond. 0 and 1 are called the boundary of a bounded lattice. A bounded lattice is denoted by $(L, \vee, \wedge, 0, 1)$.

Let P is a partially ordered set . A mapping N: $P \rightarrow P$ is called a pseudo-complement which satisfies:

- (1) For $a,b \in P$ if $a \le b$ then $N(a) \ge N(b)$;
- (2) For any $a \in P$ then N(N(a)) = a.

II. BOOLEAN LATTICE, FUZZY LATTICE

Definition 2.1 In a bounded lattice $(L, \vee, \wedge, 0, 1)$ a element $a \in L$ is called a complement of an element $b \in L$, if $a \wedge b = 0$, $a \vee b = 1$. The complement of a element a means a', i.e. b = a'. Definition 2.2 A Boolean lattice B is a distributive lattice which contains elements 0 and 1 with $0 \le a \le 1$ for all a, and in which each element $a \in B$ has a complement a' satisfing $a \wedge a' = 0$ and $a \vee a' = 1$ (i.e. the definition of a complement as definition 2.1).

Theorem 2.1 Let $(B, \lor, \land, ', 0, 1)$ is a Boolean lattice, then it satisfies following properties:

- (B,1) idempotent laws: $a \land a = a \lor a = a$;
- (B,2) commutative laws: $a \wedge b = b \wedge a$, $a \vee b = b \vee a$;
- (B,3) associative laws: $a \wedge (b \wedge c) = (a \wedge b) \wedge c$; $a \vee (b \vee c) = (a \vee b) \vee c$:
- (B,4) absorption laws: $a \wedge (a \vee b) = a \vee (a \wedge b) = a$;

```
(B,5) distributive laws: a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),
a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c);
```

- (B,6) involution law: (a')' = a;
- (B,7) De Morgan laws: $(a \wedge b)' = a' \vee b'$, $(a \vee b)' = a' \wedge b'$;
- (B,8) zero-one laws: $a \land 0=0$, $a \lor o=a$, $a \land 1=a$, $a \lor 1=1$;
- (B,9) complementation laws: $a \wedge a' = 0$, $a \vee a' = 1$.

Proposition 2.1 In a Boolean lattice $(B, \vee, \wedge, ', 0, 1)$, let

N(a) = a', then N is a pseudo-complement over B.

Definition 2.3 In a bounded lattice (L, \vee , \wedge , 0,1), a element $b \in L$ is called a complement of a element $a \in L$, if b = 1-a. The complement of an element $a \in L$ meaned $\neg a$, i.e. $\neg a = 1-a$.

Definition 2.4 A fuzzy lattice F is a distributive lattice which contains elements 0 and 1 with $0 \le a \le 1$ for all a and in which any $a \in F$ has a complement $\neg a$ satisfing $\neg a = 1 - a$. (i.e. the definition of a complement as definition 2.3)

Theorem 2.2 Let $(F, \lor, \land, \lnot, 0, 1)$ is a fuzzy lattice then it satisfies following properties:

- (F,1) idempotent laws: $a \wedge a = a$, $a \vee a = a$;
- (F,2) commutative laws: $a \wedge b = b \wedge a$, $a \vee b = b \vee a$;
- (F,3) associative laws: $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $a \vee (b \vee c) = (a \vee b) \vee c$;
- (F,4) absorption laws: $a \land (a \lor b) = a \lor (a \land b) = a;$
- (F,5) distributive laws: $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$;
- (F,6) involution law: $\neg(\neg a) = a$;
- (F,7) De Morgan laws: $\neg (a \land b) = (\neg a) \lor (\neg b),$ $\neg (a \lor b) = (\neg a) \land (\neg b);$

(F,8) zero-one laws: $a \wedge 0 = 0$, $a \vee 0 = a$, $a \wedge 1 = a$, $a \vee 1 = 1$. In a fuzzy lattice the complementation laws of a Boolean lattice generally are incorrect.

Proposition 2.2 In a fuzzy lattice (F, \vee , \wedge , \neg , 0,1) let N(a) = \neg a, then N is a pseudo-complement over F.

We take note both a Boolean lattice and a fuzzy lattice are a bounder lattices.

III. AN EXTENSION LATTICE

In (1) and (2) first introduced the definition of an extension subset and the operations between a extension subsets as follwing:

Definition 3.1 So called an extension subset \widetilde{A} over an universe of discourse U means that for any $u \in U$ corresponds a number $K_{\widetilde{A}}(u) \in (-\infty, +\infty)$ is called the relationship degree of u for \widetilde{A} such that a one-to-one mapping:

$$K: \quad U \longrightarrow (-\infty, +\infty)$$

$$u \longmapsto K_{\widetilde{A}}(u)$$

is called the relationship function of \widetilde{A} . The all extension subsets over U write as E(U).

Definition 3.2 Let $\widetilde{A}, \widetilde{B} \in E(U)$, we introduce the operations as follows:

- (1) inclution $\widetilde{A} \subseteq \widetilde{B}$ iff $\forall u \in U$, $K_{\widetilde{A}}(u) \leq K_{\widetilde{B}}(u)$;
- (2) equality $\widetilde{A}=\widetilde{B}$ iff $\forall u \in U$, $K_{\widetilde{A}}(u) = K_{\widetilde{B}}(u)$;
- (3) intersection $\widetilde{C}=\widetilde{A}\cap\widetilde{B}$ iff $\forall u\in U$, $K_{\widetilde{C}}(u)=\min\{K_{\widetilde{A}}(u),K_{\widetilde{B}}(u)\}$;
- (4) union $\widetilde{D} = \widetilde{A} \cup \widetilde{B}$ iff $\forall u \in U$, $K_{\widetilde{D}}(u) = \max\{K_{\widetilde{A}}(u), K_{\widetilde{B}}(u)\}$;
- (5) complement $\widetilde{S} = \widetilde{A}^{c}$ iff $\forall u \in U$, $K_{\widetilde{S}}(u) = K_{\widetilde{A}}(u)$.

Theorem 3.1 $(E(U), \cup, \cap)$ is a distribut ve lattice.

Proof of this theorem is elementary.

Definition 3.3 In a lattice (L, \vee, \wedge) , an element $b \in L$ is called a complement of a element $a \in L$, if b = -a. The complement a means a^{c} , i.e. $a^{c} = -a$.

Definition 3.4 An extension lattice E is a distributive lattice, and for any element $a \in E$ of which has a complement a^{C} satisfing $a^{C} = -a$. (i.e. the definition of a complement as definition 3.3).

Theorem3.2 Let (E, \lor, \land, c) is an extension lattice, then it satisfies following properties:

- (E,1) idemmpotent laws $a \wedge a = a \vee a = a$;
- (E,2) commutative laws $a \wedge b = b \wedge a$, $a \vee b = b \vee a$;
- (E,3) associtive laws $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $a \vee (b \vee c) = (a \vee b) \vee c$;
- (E,4) absorption laws $a \wedge (b \vee a) = a \vee (b \wedge a) = a$;
- (E,5) distributive laws $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$ $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c);$
- (E,6) involution law $(a^c)^c = a;$
- (E,7) De Morgan laws $(a \wedge b)^{c} = a^{c} \vee b^{c}$, $(a \vee b)^{c} = a^{c} \wedge b^{c}$.

Proposition 3.1 In an extension lattice (E, \vee, \wedge, c) , let $N(a) = a^{c}$, then N is a pseudo-complement over E.

In an extension lattice, the complementation laws and zero-one laws of a Boolean lattice generally are incorrect, and zero-one laws of a fuzzy lattice generally are incorrect, too.

We take note that an extension lattice is not a bounded

lattice. Therefore an extension lattice is a now algebraic system.

Theorem 3.3 (1) $(E(U), \cup, \cap, c)$ is an extension lattice.

(2) $((-\infty, +\infty), \vee, \wedge, c)$ is an extension lattice, too. (Here the definition of a complement as definition 3.3).

IV. AN EXTENSION SUBLATTICE

Definition 4.1 Let S is nonempty subset of an extension lattice (E, \vee, \wedge, \circ) . S is called an extension sublattice, if it satisfies:

- (1) $\forall a,b \in S$, $a \lor b \in S$ and $a \land b \in S$;
- (2) $\forall a \in S$, $a^{c} \in S$.

Theorem 4.1 (1) In the extension lattice $((-\infty, +\infty), \vee, \wedge, c)$, $([-M,M], \vee, \wedge, c)$ is an extension sublattice, and it is a proper extension sublattice of $((-\infty, +\infty), \vee, \wedge, c)$, (Here M is a positive real number).

(2) In an extension lattice $(E(U), \bigcup, \cap, c)$, an extension sublattice M(U) with is range (-M,M) (M>0 is a positive real number) is an extension sublattice of E(U), and it is a proper extension sublattice of E(U).

In particular, we have follwing

Theorem 4.2 Any fuzzy subset A over an universe of discourse U is isomorphic to some extension subset $\widetilde{A} \in M(U)$.

Proof For any $\underbrace{\mathbb{A}}_{\in} \mathcal{F}(\mathtt{U})$, let

$$f: A \rightarrow \widetilde{A}$$

$$\mathcal{M}_{\underline{A}}(\mathbf{u}) \longmapsto 2M \mathcal{M}_{\underline{A}}(\mathbf{u}) - M = K_{\overline{A}}(\mathbf{u})$$

then $\widetilde{A} \in M(U)$. (Here Mis a positive real number). So that

$$\begin{array}{ccc}
 & \stackrel{\mathcal{M}}{\underset{A}{\longrightarrow}} (\mathbf{u}_{1}) \vee \stackrel{\mathcal{M}}{\underset{A}{\longrightarrow}} (\mathbf{u}_{2}) & \longrightarrow & 2\mathbb{M}(\underset{A}{\cancel{M}}_{\mathbf{A}}(\mathbf{u}_{1}) \vee \stackrel{\mathcal{M}}{\underset{A}{\longrightarrow}} (\mathbf{u}_{2})) - \mathbb{M} \\
 & = (2\mathbb{M} \underset{A}{\cancel{M}}_{\mathbf{A}}(\mathbf{u}_{1}) - \mathbb{M}) \vee (2\mathbb{M} \underset{A}{\cancel{M}}_{\mathbf{A}}(\mathbf{u}_{2}) - \mathbb{M}) \\
 & = \mathbb{K}_{\mathbf{A}}(\mathbf{u}_{1}) \vee \mathbb{K}_{\mathbf{A}}(\mathbf{u}_{2}) \in \mathbf{A}
\end{array}$$

Similarly

$$\mu_{A}(u_{1}) \wedge \mu_{A}(u_{2}) \mapsto K_{A}(u_{1}) \wedge K_{A}(u_{2}) \in \widetilde{A}$$
Again from
$$\mu_{A}(u) \mapsto 2M \mu_{A}(u) - M = K_{A}(u)$$
have
$$\mu_{A}(u) = 1 - \mu_{A}(u) \mapsto 2M(1 - \mu_{A}(u)) - M$$

$$= 2M - 2M \mu_{A}(u) - M$$

$$= M - 2M \mu_{A}(u)$$

$$= - (2M \mu_{A}(u) - M)$$

$$= - K_{A}(u) = K_{A}c(u) \in \widetilde{A}.$$

Then $(A, \cup, \cap, \neg) \cong (A, \cup, \cap, c)$

Corollary A fuzzy lattice $\mathcal{F}(U)$ is isomorphic to an extension lattice M(U).

REFERENCES

(1) Cai Wen, Introduction of Extension Set, BUSEFAL, no 19 (1984)

[2] Cai Wen, Extension Set, Fuzzy Set, And Classical Set, First Congress of International Fuzzy Systems Association, Spain, 1985 [5] Wang Hongxu, and Zhang Hongchen and Dai Hongchai, The Extension Algebra, BUSFEFAL, no 30 (1987), p41-50