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A special class of t-norms is presented being suitable as
norm functions for the construction of entropy and energy
measures,

1. Introduction

Entropy and energy measures in the sense of DE LUCA/ TERMINI
/1/., /2/ are used to compare fuzzy sets with respect to
their "fuzziness". Usually, these measures are constructed

via so-called norm functions. It is known from /1/ that
F(a) = min(a,1~a) for all ae [0,1]

is the norm function of the special entropy measure given by
the cardinality of the intersection of a fuzzy set A with its
complement. Because the min - function is a special t-norm
(cp. KLEMENT/6/ and MIZUMOTO/8/), the question arises
whether any t-norm can be used as norm function. WEBER/9/
answers this question in the negative. Hence, we introduce
in section 3 a special property named concavity, being |
sufficient for the use as norm function. Moreover, by the
way, we find a new class of entropy measures being not
constructable via norm functions. Before (in section 2) we
sketch the concept of entropy and energy measures presented
in DE LUCA/ TERMINI/1/ in a slightly generalized form.
Finally, in section'4, we extend the known connection (cp.
/1/) between these two measures given by the intersection

of a fuzzy set with suitable other fuzzy sets to the more
general case of concave t-norms instead of the min - norm

function.



2. Entropy norm functions -

Let X be a given universe and & a 6 - algebra of subsets of
X. Then 3’ , the set of all measurable fuzzy sets on X, is
also a6 - algebra, if we adopt the ZADEH suggestions with
respect to union, intersection and complement: “"max", "min"
and "1-"., The introduction of a (6 - additive) finite meas-
ure M on [X,igj permits us to define the (relative} cardi-
nality of fuzzy sets. ’

Definition 1:
For all A6 & , |lAl] is called (relative) cardinality of A

with respect to w , iff Hall = Gb(Al/cL(x)'

In the case of a finite universe X = {x;, ..., x } , the
uniform measure with 0&({xi}) = 1/n; i = 1(1)n; yields
the DUBOIS/ PRADE definition (cp. /3/).

The following definitions are inspired by DE LUCA/ TERMINI
/1/ and KNOPFMACHER/7/. For any A & 35, let A' denote the

complement of A and m, the membership function of A,

A
Definition 2:
A mapping d: Z [0.1] is called an entropy measure, iff
(i) vAe & : d(A) = O
(ii) vAe ¥ : d(A} = d(A')
(i1ii) VA,B € & : A<'B wmd d(A) & d(B), where

Ag' B 4qmp Vxe X: mA(x) & mg(x], if mg(x) & 1/2
mA(x) ? mB(x)j, if mB(x)' ¥ 1/2,

Obviously, d reaches its maximum for ue & with m, = 1/2.

Definition 3:
A mapping e: z -> [0,1] is called an energy measure, iff
(i) e(e) = O
(ii) vA,Be & : Agc B ==p e(A) < e(B), where
AE B dmmdp V¥xe X:m,(x)SE mo(x).

For the finite case these definitions essentially corre-
spond to the original definitions of DE LUCA/ TERMINI/1/.
Note, however, that in our case for the conditions (i) the
converse direction is not demanded,
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"Hence d(+) = O and e(+) = O are also allowed as entropy
and energy measures. The main advantage of the preceding
definitions is that we have not to weaken the conditions
for the case of an infinite universe, as in /7/.

Usually (cp. /9/), entropy measures are constructed via
entropy norm functions.

Definition 4: /9/

A continous function F: [0,1] x [0,1] - [0.1] is called
an entropy norm function, iff

(i) F(a) =0 for ae{0,1}

(ii) F is increasing in [0,1/2] and decceasing in [1/2,1]
(iii) vae [0,1] : F(a) = F(i-a)

Note that we do not to demand the converse direction in (i).
Now we mention a result due to KNOPFMACHER/7/.

Theorem 1:

If F is a given entropy norm function then

d(A) = 1/m(X)J F(my(x)) daa(x) (1)

is an entropy measure on the measure space [X,if,p&].

Note that we use the integral in its Lebesgue - Stieltjes
sense., EMPT0Z/4/ has shown that under additional assump-
tions all entropy measures have the representation (1).
Obviously, for example

Fy(2)
d, (A)
Recently, in the literature (cp. for example KLEMENT/6/,
WEBER/9/, GOTTWALD/5/ and MIZUMOTO/8/ ) other intersection
operators using so - called t-norms are discussed instead

min(a,1-a) 1is a special entropy norm function and

A A~ Al is an entropy measure,

of the "min". A t-norm t is a commutative, associative,
continous and monotonous mapping from [0,1] x [0,1]

into [0,1] with

t(a,1) = a for all ae [0,1]. - (2)

For generalized union operators - so - called t-conorms s -
instead of (2) it holds: s(a,1) = 1 for all ae [0,1].
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'Wwe say that a t-norm t is dual to a t-conorm s, iff the 1
generalized De - Morgan - law

s(a,b) = 1 - t(1-a,1-b) for all a,b € [0,1]

is valid, So we define:

C=ARB P Vxe X: mc(x) = t(mA(_:gt).mB(x))‘“ and
D=AWB 4= Vxe& X: mj(x) = s(nA(*),mB(x)‘).

Then KLEMENT/6/ has shown that for those operators % is
also a 6 - algebra, Staring from /9/ we now discuss the
problem which t-norms can be used as entropy norm functions,

3. Entropy measures and t-norms

In WEBER/9/ we find a general survey on possible entropy
norm functions. WEBER/9/ distinguishes 3 different types of
entropy norm functions. Norm functions of type 1 are (cp.
/9/) functions F with F(a) = t(a,1-a) where t is a t-norm.
Then t must satisfy the conditions (cp. /9/)

- t(a,1-a) = O for a € {0,13 (3)

- t(a,l1-a) is increasing for a € [0,1/2] (4)

Then, obviously, (3) is satisfied for all t-norms. But,
with respect to (4), WEBER/9/ has given the following
counterexample. For the t-norm

t(a,b) = g"*(g(a) + g(b))s a,be [0,1] with
3(1/2 - ¢} + 174 for c & [0,1/2]
g(c) =

(1 - c)2 for c ¢ [1/2,1] it follows
1/2 - -'\/1/4 - a + 4:3.2/31 if ae [0,1/2]
t(a,lﬂa) = 2 1
1/2 -\/7/12 - 58/3 + 4a“/3 if ae [1/2,1]

with t(1/4,3/4) = t(1/2,1/2) = 1/2-1A/12" < t(3/8,5/8) = 1/4
in contradiction to (4).
Now we introduce:

Definition 5:

A t-norm t is said to be concave, iff the function

F(a) = t(a,1-a) is concave for all ae¢ [0,1], i.e. iff
F(Aa + (1-A)b} ¥ AF(a) + (1- A)F(b)

for all a,b,A e [o0,1].

Lemma 1 shows that these t-norms satisfy (4).
L
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Lemma 1: For a concave t-norm t it hol#s
va,b € [0,1] : min(a,l1-a) & min(b,1-b) w—
t(a,1-a) § t(b,1-b). (5)

To prove (5), we distinguish the 4 cases a & b & 1/2,

1-a £ b& 1/2, a£ 1-b 4 1/2 and 1-a £ 1-b & 1/2 and use
that e.g. for a& b & 1/2 it holds b = Aa +(1~- A)(1-a)
for some A €& [1/2,17]. YAGER/10/ defines t-norms satisfying
(5) as regular under complements. The concave t-norms are a

special case of such norms,

Furthermore, we mention that the assumption of convexity of
F, F(Aa + (1-A)b) & AF(a) + (1- A)F(b) for all

a,b, A€ [0,1] leads to the trivial function F a O:

For any A & [0,1] we have a = A0 + (1I- A)1 and hence

F(a) & AF(0) + (1=A)F(1) = 0 for all ag [0,1].

We therefore obtain reasonable, i.e. non ~ trivial, entropy
norm functions for concave t-norms,

Examples for concave t-norms are

F,(a) = min(a,1-a) and F,(a) = a(1+a}.

However, for the "bounded sum™ we get
F(a) = max(0, a + (1-a) - 1) = 0 for all ae [0,1].

Using concave t-norms, we define additional entropy norm
functions, which are, in general, not t«norms themselves.

Lemma 2: If t and t' are concave t-norms, then
F(a) = t(a,1-a)/(1 - t*'(a,1-a))

F(a) = t*(a,1-a)/(1 - t(e,1~a))

are entropy norm functions,

It is easy to check the conditions of am entropy norm func-
tion (cp. Definition 4) with the help of Lemma 1.

For 1 - t(a,l1-a) we may also write s(a,l1-a) where s is the
dual t-conorm to t., Then s is called a convex t-conorm,
since G(a) = s(a,1-a) = 1 - t(a,1-a) = 1 - F(a) is a convex
function for all a & [O.lj.

Hence, we obtain, for example

F3(a) = min(a,l1-a)/max(a,1-a) and

F4(a) = a(l-a)/(1 - a(i~a)) as entropy norm functions,



8

r;t is interesting that we can explain F4 as t-norm, since
t(a,b) = ab/(a + b - ab) corresponds to the Hamacher -
product - norm (cp. MIZUMOTO/8/). But, for F, this is not
true. It is easy to check that f(a,b) = min(a,b)/max(a,b)
does not satisfy the monotony property of a t-norm.
Moreover, this way we get back the well - known min - norm,
since it holds F(a) = ab/max(a,b) = min(a,b).

Hence, for concave t-norms t and convex t-conorms s we get

ﬁfﬂ[ (6)

as entropy measure., Note that the duality of t and s is not

assumed, The entropy measure (6) have the following
!

dy(A) =

property.

Lemma 3: For all fuzzy sets A% with constant membership

grade, i.e., m = a, it holds

Aa»
d,(A%) = |ja% & @] /e w (Aa)’” .

This can easily be concluded from

t(a,1-a)/s(a,1-a) = [t(a,1-a) dpe(x)/ | s(a,1-a) d(x).

Now we can ask the question whether for any fuzzy set A

d(a) = |laaall/ jaw Al (7)

is an entropy measure.

Lemma 4: If t is a concave t-norm and s a convex t-conorm
then d(A) according to (7) is an entropy measure.

Note that from Lemma 1 we have for A &' B:

ARA'c B B' and AwWA'R BwB'.,

(6) and (7) are identical for fuzzy sets with constant
membership grade and the duality of the norms is also not
assumed. '

Obviously, however, (7) has not & representation of the
form (1) given in Theorem 1. Hgnce, this way we have
finally obtained entropy measures of a:new‘class which
cannot be constructed by help of an entropy norm function.
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4, The connection between entropy and energy

Finally, we want to extend the known cdnnection between
entropy and energy measures (cp. DE LUGA/ TERMINI/1/) to

the case that general intersection operators are considered,
In generalization of a result in /1/ we get:

Theorem 2:

If e is an energy measure and t a concédve t-norm then
d(A) := e(AZ4\A') is an entropy measure,

Conversely, if d is an entropy measure and t a general

(continous) t-norm then we have

e(A) := d(AgU) with m, = 1/2 as snergy measure,

Note that for t = min this corresponds to the result of DE
LUCA/ TERMINI/1/. Using Lemma 1, we get:

AL B =mp AQA'S Be B,

The assumption of a concave t-norm made in the first state-
ment is therefore necessary, because e,g. for the counter-
example in section 3 this condition is not valid. We mention
that the assumption of convexity leads to Ag A' =% and
hence to the non - interesting entropy measure d = 0. With
respect to the second statement we know that

Ag B =mp ApUSLBAaU holds for all and not only for
concave t-norms t, since t is monotone,

Summarized, the connection between the entropy and the
energy of fuzzy sets is also valid for the general case of
a concave t-norm as intersection operator,
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