EXAMPLES OF L-TOPOLOGIES
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1. INTRODUCTION.

In his classical paper [{] Zadeh first introduced the
fundamental concept of fuzzy set. His idea was successively
applied to topological spaces resulting in a study of fuzzy
topology [q .

In this paper we give several examples of fuzzy topologi
cal spaces and examine the relative properties. In the sequel
we assume that L is a complete lattice and that O and 1 are the
bounds of L. If X is a set, then F(X,L)={f/f:X—L} is the class
of the L-subsetsof X, and F(X)=F(X,[0,7]). If «¢L the L-subset
f, 1s defined by setting f,(x)= for every xeX.
Z. A GENERALIZATION OF THE INCLUDED AND EXCLUDED FUZZY TOPOLOGIES.

We start by giving a generalization of the included and

excluded fuzzy topologies defined by E.E.Kerre [5].

PROPOSITION 1. Let D=(DX)XEX a family of v-complete sublat-
tices of L, then the set:
(1) ”C(D):{fep(x,L)/f(x)er for every xeX}u -{fo,f1}
is an L-topology. The topologies so defined generalize the in-

cluded and excluded fuzzy set topologies.

Proof. It is obvious that (D) is an L-topology. Assume
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that L=[D,ﬂ and Dx=§yeL/yé g(xi} where g is any element of F(X).
Then T(D)={feF(X)/f2pjU{f }.So we have obtained the included
fuzzy set topology associated to g.

In order to obtain the excluded fuzzy set topologies we can
assume that Dx=fy6L/ v < 1—g(x)}. Then ’Z(D)=£fEF(X)/ f£1-g}u
{£ 3={feF0/1-£2 eduif .

Note that if L=[0,ﬂ , then the class of closed L-subsets is
{feF(X)/f(x)eDé for every XEX}L}{fO,f1} where D;=€yeL/1—yer}.
Obviously if DX=%' for every xeX, then <C(X) is a coplen
L-topology. This appens, for example, if Dx is an interval of
center 1/2.

Several examples of L-topologies defined by (1) are obtained
by assuming that, for every x¢X,

a) DX is a finite chain;
b) DX={y€L/f(x)é y< g(x)} where f, ge F(X,L);
c) DX={yeL/f(x)L v£ g(x)} where f, ge F(X,L);
d) Dx is a filter of L;

e) DX is a classical topology over a set S and L=3(S).

3. GENERALIZED NATURAL TOPOLOGIES.

Now we will to generalize the natural fuzzy topologies defi-

ned by F.Conrad in [2].

a family of v-complete lattices

PROPOSITION 2. Let T=(Tj)jeJ
of &(X), and G=(gj)1€J a family of elements of F(X,L). Then



the set

(2) ”((G,T)={feF(x,L)/{xeX/f(x)>gj(x)} e T, for every jeJ}u{fO,f1}
is an L-topology. The tonologies so defined generalize the na-
tural topologies.

Proof. Let (fi)i be a family of elements of G (G, T) =

Z(G,T)-{fo,f{}. Weeiave, for every jeJ, that

PxeX/ M £, (>, (0} = Sdcex/£, (x)a pi0feT;.
It follows that S{}fié'Z(G,T). Now, let f and g be elements
of G'(C,T), then

{xéX/f(x)Ag(x)Agj (x)} = {xeX/f(x)sgj Ot N {ch/g(x)_\gj (x)} €T .
It follows that fAge¢ C(G,T) and this proves that ©¢T(G,T) is an
L-topology. In order to obtain the natural fuzzy topology as-

sociated to a given topology S, assume that G=(f and

) “Jelo, 1)
that Ty=S for every déﬂ),ﬂ . Then fe C(G,T) if and only if

{X&X/f(x)ld} €S for every <%6B);ﬂ. This proves that 7T(G,T)
is the set of lower semicontinuous maps, i.e. the natural fuz

zy topology associated to S.

Interesting types of L-topologies are obtained from (2)
by assuming that the Tj are filters. For example if every Ti
is the filter of the cofinite subsets of X and gj=g for every
jeJ, then fe TG, T) if and only if f(x)N g(x) almost-everywere.
Also we can generalize the construction of Proposition 2 into

the following way.

PROPOSITION 3. If T=(T.). and F=(F%)¥?X are families of
i jed j jed

filters of F(X) and L respectively, then the set
(3) /C(T,F)={f€F(X,L)/{xeX/f(x)éF?}eTi for every jeJ}ung}
is an L-topology. - )

Proof. Let je¢J and assume that (fi)ie is a family of elements

I
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of F(X,L) such that {xeX/f (x)eF. }eT Then from {xeX/ \Efi(x)e
F. }.D{xeX/f (x)eF, } it follows that {xeX/ V’f (X)EF‘}éf Like-
w1se assume that {xeX/f(x)eF } eT. and that {xeX/g(x)eF }éT
Then {xeX/f(x)é‘F }r\{xeX/g(x)eF }eTJ and from gxex/f(x)ng(x)eF 3

b] {xéX/f(x)eFi}/\{xeX/g(x)eFi} it follows that {xeX/f(x)Ag(x) €
F?}eTj. This broves that 2IT,F) is an L-topology.

4. L-TOPOLOGIES ASSOCIATED TO A GRAPH.

Let (X,R) be a graph, i.e. a subset of XxX. Then we can as-

sociate to (X,R) an L-topology in a very natural way.

PROPOSITION 4. Let (X,R) a graph, then the set
(4)  T(R)=§feF(X,L)/ xRy implies f(x)< f(y)}

1s an L-topology.

Proof. Obviously foe“Z(R),and f1e'ZTR). Moreover if

(£.).
17 1el
that fi(x)é,fi(y) for every iel, it is easy to prove that
. . \/ 4 \/ . _ .
xRy implies ieIfi(x)_-iéIfi(y). Then 7(R) is v-complete.

Likewise one proves that fe C(R) and g¢Z(R) imply fagel(R).

is a family of elements of 7(R), i.e. if xRy implies

If R is an order-relation, then ¢ (R) is the set of increa-

sing mars from X to L. If G is a group of transformations on

X and

(5) R={(x,y)/there exist geG such that y=g(x)},

then f¢ G(R) if and only if f(x)< f(g(x)) for every xe¢X and
ge(G. Then it is also f(g(x))éf(g—1(g(x)))=f(x). This proves
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that fe ¢G(R) if and only if f(x)=f(g(x)) for every xé¢X and

geG. In others words ¢ (R) is the set of G-invariant maps

from X to L.

It is interesting to examine the fuzzy continuity defined

by these L-topologies. In the sequel R denote the order-rela

oo ey X

tion generated by R, 1i.e. §={jx,y)eXXX/there exists X, n

such that xRx1,x1Rx2,...,any}u{(x,x)éXxX/xeX}.

PROPOSITION 5. Let (X,R) and (X',R') two graph, then a map

h:X—>X' is L-continuous,with respect to € (R) and ‘ZTR'), if and

only if it is an dncreasing map with respect R and R'.

Proof. Recall that h is L-continuous if and only if h-1(g)

¢ T(R) for every gc C(R'), if and only if xRy implies
g(h(x))<«g(h(y)) for every gthkR'), xe X and ye€Y. Now if h is
increasing, from xRy it follows that h(x)R'h(y).Then eéither there

exists x1,...,xnf)(' such that h(x)R*'x,, x R'x . an'h(y)

17 1 2’
or h(x)=h(y). It follows that g(h(x)) £g(h(y)) and this proves
that h is L-continuous.

Conversely, assume h L-continuous and, for every beéX', let

g, be defined by setting
0 if xR'b
gy (x)=
1 otherwise.
We will prove that gbe-ZYR'), i.e. that xR'y implies

gb(x)éng(y). Now if gb(x)=0 then gb(x)évgb(y). If gb(x)=1,
then from gb(y)=0, i.e. yﬁ'b,and xR'y it follows that xﬁ'b,
that 1is gb(x)=0, absurd. It follows that gb(y)=1 and there-
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fore that gb(x)é-gb(y). This proves that gbg’zTR'). Now from
the L-continuity of h it follows that xRy implies gb(h(x))f
gb(h(y)) for every beX'. By setting b=h(y), we have that
gh(y)(h(y))=0, ani gh(y)(h(x))=0. In cinclusion from xRy it
follows that h(x)R'h(y). Moreover if xRy, i.e. if there exists
Xyseee,X € X such that xRx1, x1Rx2,...,any or x=y, it fol-
lows that h(x)ﬁ'h(x1), h(x JR'R(x,),..., h(xn)i'h(y) or h(x)=
h(y). This proves that h(x)E'h(y).

If R and R' are order-relations, then R=R and R'=R'. Then
from Proposition 5 it follows that h is L-continuous if and only
if it 1s increasing. Then we can assert that the map H,
defined by setting H(R)= C(R) and H(h)=h, is a functor from
the category of the ordered sets into the category of the
L-topological spaces.

If R is defined by (5) and R' is the identity relation,
then R=R and R'=R' and h:X—=X" 1s L-continuous if and only
1f h(x)=h(g(x)) for every geG. This proves that the L-conti

nuous maps from X to X' coincide with the G-invariant maps.
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