EXAMPLES OF L-TOPOLOGIES

Giangiacomo Gerla

1. INTRODUCTION.

In his classical paper $\begin{bmatrix} 4 \end{bmatrix}$ Zadeh first introduced the fundamental concept of fuzzy set. His idea was successively applied to topological spaces resulting in a study of fuzzy topology $\begin{bmatrix} 1 \end{bmatrix}$.

In this paper we give several examples of fuzzy topological spaces and examine the relative properties. In the sequel we assume that L is a complete lattice and that O and 1 are the bounds of L. If X is a set, then $F(X,L) = \{f/f: X \longrightarrow L\}$ is the class of the L-subsets of X, and F(X) = F(X,[0,1]). If $\alpha \in L$ the L-subset f_{α} is defined by setting $f_{\alpha}(x) = \alpha$ for every $x \in X$.

2. A GENERALIZATION OF THE INCLUDED AND EXCLUDED FUZZY TOPOLOGIES.

We start by giving a generalization of the included and excluded fuzzy topologies defined by E.E.Kerre [3].

<u>PROPOSITION</u> 1. Let $D=(D_x)_{x \in X}$ a family of v-complete sublattices of L, then the set:

(1) $\mathcal{T}(D) = \{f \in F(X,L) / f(x) \in D_X \text{ for every } x \in X\} \cup \{f_0,f_1\}$ is an L-topology. The topologies so defined generalize the included and excluded fuzzy set topologies.

<u>Proof</u>. It is obvious that $\gamma(D)$ is an L-topology. Assume

that L = [0,1] and $D_X = \{y \in L/y \ge g(x)\}$ where g is any element of F(X). Then $C(D) = \{f \in F(X)/f \ge g\} \cup \{f_0\}$. So we have obtained the included fuzzy set topology associated to g.

In order to obtain the excluded fuzzy set topologies we can assume that $D_X = \{y \in L \mid y \le 1 - g(x)\}$. Then $\mathcal{T}(D) = \{f \in F(X) \mid f \le 1 - g\} \cup \{f_0\} = \{f \in F(X) \mid 1 - f \ge g\} \cup \{f_0\}$.

Note that if L = [0,1], then the class of closed L-subsets is $\{f \in F(X)/f(x) \in D'_X \text{ for every } x \in X\} \cup \{f_0,f_1\}$ where $D'_X = \{y \in L/1 - y \in D_X\}$. Obviously if $D_X = D'_X$ for every $x \in X$, then C(X) is a <u>coplen</u> L-topology. This appens, for example, if D_X is an interval of center 1/2.

Several examples of L-topologies defined by (1) are obtained by assuming that, for every $x \in X$,

- a) D_{x} is a finite chain;
- b) $D_{X} = \{y \in L/f(x) \le y \le g(x)\}$ where f, $g \in F(X,L)$;
- c) $D_x = \{y \in L/f(x) \angle y \le g(x)\}$ where f, $g \in F(X,L)$;
- d) D_x is a filter of L;
- e) $D_{\mathbf{X}}$ is a classical topology over a set S and L= \mathcal{C} (S).

3. GENERALIZED NATURAL TOPOLOGIES.

Now we will to generalize the <u>natural fuzzy topologies</u> defined by F.Conrad in [2].

 $\frac{\text{PROPOSITION}}{\delta(X), \text{ and } G=(g_j)_{j\in J}} \text{ a family of } \text{V-complete lattices}$ of $\delta(X), \text{ and } G=(g_j)_{j\in J} \text{ a family of elements of } F(X,L). Then$

the set

(2) $\mathcal{T}(G,T) = \{f \in F(X,L) / \{x \in X / f(x) \ge g_j(x)\} \in T_j \text{ for every } j \in J\} \cup \{f_0,f_1\}$ is an L-topology. The topologies so defined generalize the natural topologies.

Proof. Let $(f_i)_{i \in I}$ be a family of elements of $\mathcal{C}'(G,T) = \mathcal{C}(G,T) - \{f_0,f_1\}$. We have, for every $j \in J$, that $\{x \in X/\bigvee_{i \in I} f_i(x) \ge g_j(x)\} = \bigcup_{i \in I} x \in X/f_i(x) \ge g_j(x)\} \in T_j$. It follows that $\bigvee_{i \in I} f_i \in \mathcal{C}(G,T)$. Now, let f and g be elements of $\mathcal{C}'(G,T)$, then

 $\left\{x \in X/f(x) \land g(x) \trianglelefteq g_j(x)\right\} = \left\{x \in X/f(x) \trianglelefteq g_j(x)\right\} \land \left\{x \in X/g(x) \trianglelefteq g_j(x)\right\} \in T_j.$ It follows that $f \land g \in \mathcal{T}(G,T)$ and this proves that $\mathcal{T}(G,T)$ is an L-topology. In order to obtain the natural fuzzy topology associated to a given topology S, assume that $G = (f_{\mathbf{x}})_{\mathbf{x} \in [0,1]}$ and that $T_{\mathbf{x}} = S$ for every $\mathbf{x} \in [0,1]$. Then $f \in \mathcal{T}(G,T)$ if and only if $\left\{x \in X/f(x) \trianglelefteq \alpha\right\} \in S$ for every $\mathbf{x} \in [0,1]$. This proves that $\mathcal{T}(G,T)$ is the set of lower semicontinuous maps, i.e. the natural fuzzy topology associated to S.

Interesting types of L-topologies are obtained from (2) by assuming that the T_j are filters. For example if every T_j is the filter of the cofinite subsets of X and $g_j = g$ for every $j \in J$, then $f \in \mathbf{Z}(G,T)$ if and only if $f(x) \supset g(x)$ almost-everywere. Also we can generalize the construction of Proposition 2 into the following way.

<u>PROPOSITION</u> 3. If $T = (T_j)_{j \in J}$ and $F = (F_j^x)_{j \in J}^{x \in X}$ are families of filters of $\mathfrak{P}(X)$ and L respectively, then the set $(3) \quad \mathfrak{T}(T,F) = \left\{ f \in F(X,L) / \left\{ x \in X / f(x) \in F_j^x \right\} \in T_j \text{ for every } j \in J \right\} \cup \left\{ f_0 \right\}$ is an L-topology.

<u>Proof.</u> Let $j \in J$ and assume that $(f_i)_{i \in I}$ is a family of elements

of F(X,L) such that $\{x \in X/f_i(x) \in F_j^X\} \in T_j$. Then from $\{x \in X/\bigvee_{i \in I} f_i(x) \in F_j^X\} \supseteq \{x \in X/f_i(x) \in F_j^X\}$ it follows that $\{x \in X/\bigvee_{i \in I} f_i(x) \in F_j^X\} \in T_j$. Likewise, assume that $\{x \in X/f(x) \in F_j^X\} \in T_j$ and that $\{x \in X/g(x) \in F_j^X\} \in T_j$. Then $\{x \in X/f(x) \in F_j^X\} \cap \{x \in X/g(x) \in F_j^X\} \in T_j$ and from $\{x \in X/f(x) \land g(x) \in F_j^X\} \cap \{x \in X/g(x) \in F_j^X\}$ it follows that $\{x \in X/f(x) \land g(x) \in F_j^X\} \in T_j$. This proves that $\{x \in X/g(x) \in F_j^X\} \in T_j$. This proves that $\{x \in X/g(x) \in F_j^X\} \in T_j$. This proves that $\{x \in X/g(x) \in F_j^X\} \in T_j$. This proves that $\{x \in X/g(x) \in F_j^X\} \in T_j$. This proves that $\{x \in X/g(x) \in F_j^X\} \in T_j$.

4. L-TOPOLOGIES ASSOCIATED TO A GRAPH.

Let (X,R) be a graph, i.e. a subset of $X \times X$. Then we can associate to (X,R) an L-topology in a very natural way.

PROPOSITION 4. Let (X,R) a graph, then the set (4) $\mathcal{T}(R) = \{f \in F(X,L) / xRy \text{ implies } f(x) \leq f(y) \}$ is an L-topology.

<u>Proof.</u> Obviously $f_0 \in \mathcal{T}(R)$ and $f_1 \in \mathcal{T}(R)$. Moreover if $(f_i)_{i \in I}$ is a family of elements of $\mathcal{T}(R)$, i.e. if xRy implies that $f_i(x) \not = f_i(y)$ for every i\(i I\), it is easy to prove that xRy implies $\bigvee_{i \in I} f_i(x) \not = \bigvee_{i \in I} f_i(y)$. Then $\mathcal{T}(R)$ is v-complete. Likewise one proves that $f \in \mathcal{T}(R)$ and $g \in \mathcal{T}(R)$ imply $f \land g \in \mathcal{T}(R)$.

If R is an order-relation, then $\mathcal{C}(R)$ is the set of increasing maps from X to L. If G is a group of transformations on X and

(5) $R = \{(x,y) / \text{there exist } g \in G \text{ such that } y = g(x) \}$, then $f \in \mathcal{C}(R)$ if and only if $f(x) \leq f(g(x))$ for every $x \in X$ and $g \in G$. Then it is also $f(g(x)) \leq f(g^{-1}(g(x))) = f(x)$. This proves

that $f \in \mathcal{C}(R)$ if and only if f(x) = f(g(x)) for every $x \in X$ and $g \in G$. In others words $\mathcal{C}(R)$ is the set of <u>G-invariant maps</u> from X to L.

It is interesting to examine the fuzzy continuity defined by these L-topologies. In the sequel \overline{R} denote the order-relation generated by R, i.e. $\overline{R} = \{(x,y) \in X \times X / \text{there exists } x_1, \ldots, x_n \text{ such that } x R x_1, x_1 R x_2, \ldots, x_n R y \} \cup \{(x,x) \in X \times X / x \in X \}$.

<u>PROPOSITION</u> 5. Let (X,R) and (X',R') two graph, then a map $h:X\longrightarrow X'$ is L-continuous, with respect to $\mathcal{T}(R)$ and $\mathcal{T}(R')$, if and only if it is an increasing map with respect \overline{R} and \overline{R}' .

<u>Proof.</u> Recall that h is L-continuous if and only if $h^{-1}(g)$ $\in \mathcal{T}(R)$ for every $g \in \mathcal{T}(R')$, if and only if xRy implies $g(h(x)) \leq g(h(y))$ for every $g \in \mathcal{T}(R')$, xeX and yeY. Now if h is increasing, from xRy it follows that h(x)R'h(y). Then either there exists $x_1, \ldots, x_n \in X'$ such that $h(x)R'x_1, x_1R'x_2, \ldots, x_nR'h(y)$ or h(x)=h(y). It follows that $g(h(x)) \leq g(h(y))$ and this proves that h is L-continuous.

Conversely, assume h L-continuous and, for every b ϵX ', let $\mathbf{g}_{\mathbf{b}}$ be defined by setting

$$g_b(x) = \begin{cases} 0 & \text{if } x \overline{R}'b \\ 1 & \text{otherwise.} \end{cases}$$

We will prove that $g_b \in \mathcal{T}(R')$, i.e. that xR'y implies $g_b(x) \leq g_b(y)$. Now if $g_b(x) = 0$ then $g_b(x) \leq g_b(y)$. If $g_b(x) = 1$, then from $g_b(y) = 0$, i.e. yR'b, and xR'y it follows that xR'b, that is $g_b(x) = 0$, absurd. It follows that $g_b(y) = 1$ and there-

fore that $g_b(x) \neq g_b(y)$. This proves that $g_b \in \mathcal{T}(R')$. Now from the L-continuity of h it follows that xRy implies $g_b(h(x)) \neq g_b(h(y))$ for every be X'. By setting b=h(y), we have that $g_{h(y)}(h(y))=0$, and $g_{h(y)}(h(x))=0$. In conclusion from xRy it follows that $h(x)\overline{R}'h(y)$. Moreover if $x\overline{R}y$, i.e. if there exists $x_1,\ldots,x_n\in X$ such that $xRx_1,x_1Rx_2,\ldots,x_nRy$ or x=y, it follows that $h(x)\overline{R}'h(x_1)$, $h(x_1)\overline{R}'h(x_2)$,..., $h(x_n)\overline{R}'h(y)$ or h(x)=h(y). This proves that $h(x)\overline{R}'h(y)$.

If R and R' are order-relations, then $R=\overline{R}$ and $R'=\overline{R'}$. Then from Proposition 5 it follows that h is L-continuous if and only if it is increasing. Then we can assert that the map H, defined by setting $H(R)=\widetilde{C}(R)$ and H(h)=h, is a functor from the category of the ordered sets into the category of the L-topological spaces.

If R is defined by (5) and R' is the identity relation, then R=R and R'=R' and $h:X \longrightarrow X'$ is L-continuous if and only if h(x)=h(g(x)) for every $g \in G$. This proves that the L-continuous maps from X to X' coincide with the G-invariant maps.

REFERENCES

- 1 C.L.CHANG, Fuzzy topological spaces, J.Math.Anal.Appl. 24 (1968), 182-190.
- F.CONRAD, Fuzzy Topological Concepts, J.Math.Anal.Appl. 74 (1980), 441-445.
- E.E.KERRE, Fuzzy Sierpinski Space and Its Generalizations, J.Math.Anal.Appl. 74 (1980), 318-324.
- 4 L.A.ZADEH, Fuzzy sets, Inform.Contr. 8 (1965), 338-353.