EQUIVALENT CONDITIONS UNDER WHICH THE NORMAL HYPERGROUPS ARE QUOTIENT GROUPS

Zhang zhenliang

Kunming Technology Institute, Kunming, CHIMA

This paper is a continuous approach paper (3). Three equivalent conditions under which the normal hypergroups are quotient groups are discussed here.

KEYWORDS: Hypergroup, Normal hypergroup, Quotient group, Subgroup, Group.

In Ref (1) the concept of hypergroup was proposed. Let G be a group, for any A, B \in g \in 2^G - { ϕ }, we induce an operation A*B = {ab | a \in A, b \in B}, if the g is a group with respect to the operation ".", g is called a hypergroup on G. A normal hypergroup is a hypergroup whose unit element contains the unit element of the G. Let g be a normal hypergroup on G, for any A \in g, write $\overline{A} = \{a \in A \mid a^{-1} \in A^{-1}\}$, in Ref(3), we had proved that $\overline{g} = \{\overline{A} \mid A \in g\}$ is a quotient group and $g \cong \overline{g}$. In this paper, we shall prove three equivalent conditions under $g = \overline{g}$.

THEOREM Let G be a group, if g is a normal hypergroup on G, then following conditions are equivalence.

- (1) $g = {}^{G}o/_{E}$; (here $Go = U\{A \mid A \in g\}$)
- (2) Go<G and for any A,B \in g, A \cap B = \notin ;
- (3) E<G; (here E is unit element of g)

- (4) For any a $(A \in g)$, we have $a^{-1} \in A^{-1}$.
- PROOF $(1) \Longrightarrow (2)$; It is apparent.
- (2) \Longrightarrow (3); For any a, b \in E, we have ab \in E = E.

 Assume $a^{-1} \not\in E$, from Go < G, we know there is A \in g such that $a^{-1} \in$ A and A $\not\in$ E. For any c \in A $\stackrel{-1}{=}$, we have $a^{-1} c \in$ AA $\stackrel{-1}{=}$ E. Thus $aa^{-1} c \in$ E = E, i.e. c \in E. So c \in A $\stackrel{-1}{=}$ E. Thus means A $\stackrel{-1}{=}$ E. Thus AA $\stackrel{-1}{=}$ AE = A, i.e. A=E. This is at variance with A $\not\in$ E. So $a^{-1} \in$ E. Therefore E < G.
- (3) \Longrightarrow (4); For any b \in A⁻¹, from a \in A, we have ab \in AA⁻¹=E. Since E < G, so (ab)⁻¹ = b⁻¹a⁻¹ \in E. Thus bb⁻¹a⁻¹ \in A⁻¹E = A⁻¹. Therefore a⁻¹ \in A⁻¹.
- (4) \Longrightarrow (1) Firstly it is easy to prove E < Go < G. Secondly, for any a \in Go, there is A \in g such that a \in A, from a $^{-1}\in$ A $^{-1}$ and AEA $^{-1}$ = E, we have aEa $^{-1}\subset$ AEA $^{-1}$ = E. Therefore E \triangleleft Go. Finally, for any a \in A, it is clear that aE \subset AE = A. Conversely, for any b \in A, from a $^{-1}\in$ A $^{-1}$, we have a $^{-1}b\in$ A ^{-1}A = E. Thus aa $^{-1}b\in$ aE, i.e. b \in aE. So A \subset aE. Therefore A = aE.

From above the results we have $g = \frac{Go}{E}$.

In special, if G = Go = U { A | A \in g } , then above Theorem is equivalent conditions under g = $^{G}/E$.

REFERENCES

- (1) Li Hongxing, Duan Qinzhi, Wang Peizhuang, Hypergroup (1) BUSEFAL NO.23 (1985).
- (2) Zhang zhenliang, Subgroups and invariant subgroups of normal hypergroups, BUSEFAL NO.28 (1986)

- (3) Zhang zhenliang, Li Hongxing, Wang Peizhuang, Relationship between normal hypergroups and quotient groups, BUSEFAL NO.27 (1986).
- (4) Wang Peizhuang, Fuzzy sets and fall shadow of random sets,
 Publishing house of Beijing Normal University, CHINA (1985).
- (5) A. Rosenfeld, Fuzzy groups, J.M.A.A 35 (1971)
- (6) T.W. Hungerford. Algebra, U.S.A (1980).