TNF-MEASURE ON TNF-MEASURABLE SPACE

Zhai Jianren

Hebei Institute of Mechanical Electrical Engineering, Shijiazhuang, China

Following the suggestion made by Klement[1] and Yu Yandong[2], a new concepte of TNF-measure on TNF-measurable space is given, T being any measurable trianglar norm and N any negation. Most of the results about TF-measures obtained in[1] are extended to the case of TNF-measures. Some other properties of TNF-measure are also discussed.

Keywords: Triangular norm(t-norm), Negation, TNF- σ -algebra TNF-measurable space, TNF-measure, TNNF-measure.

I. Introduction

In 1982, Klement [1] first introduced the notion of $TF-\sigma-$ algebras and TF-measure. In 1985, Yu Yandong continuing Klements work on $TF-\sigma-$ algebras given an axiomatic theory of $TNF-\sigma-$ algebras.

In the present paper, continuting Yus work on TNF- σ -algebras, we further give a new concept of TNF-measure on TNF-measurable space, where the operations intersection and union of fuzzy sets are assumed to be measurable the norms and their N-duals, N being any negation(cf.,e.g.[1, 2].)

In Section II we give some characterizations of these TN-fuzzy measures and the extension theorem of TNF-measure. Final we give a notion of TN-non-additive-fuzzy measure we would study its properties in other paper.

II. TNF- O-algebras

Throughout this paper U will denote a nonempty set. The unit interval I=[0,1] will always be equipped with $\mathcal B$, the usual σ -algebra of Borel subsets of [0,1].

Now let us recall some basic definitions and mathematical facts about fuzzy sets and TNF- σ -algebras.

Definition2.1. A fuzzy set on U is a function $x:U \longrightarrow [0,1]$. As usual, the family of all fuzzy sets on U is denoded by $F = [0,1]^U$.

Definition 2.2.Let T be a t-norm, S an s-norm, and N a negation. Given any $x,y \in F$, T(x,y), S(x,y) and N(x) are the fuzzy sets on U determined, respectively, by

$$T(x,y)(u) = T(x(u),y(u)),$$

 $S(x,y)(u) = S(x(u),y(u)),$
 $N(x)(u) = N(x(u)),$

for any $u \in U$.

Let T be a t-norm and N anegation. Then it is easy to see that there exists one and only one s-norm satisfying the identity:

(I) N(T(x,y)) = S(N(x),N(y)) for all $x,y \in F$. The s-norm S is called the N-dual of T (cf.[1,2]).

Note that the idetity (I) is equivalent to the identity

(II) N(S(x,y)) = T(N(x),N(y)) for all $x,y \in F$. this moment

$$S(x,y) = N(T(N(x),N(y))).$$

Definition 2.3. Let T be a measurable t-norm, N a negation and S the N-dual of T. A subfamily σ of F is called a fuzzy σ -algebra on U with respect to the t-norm T and the negation N, or TNF- σ -algebra for short, if and only if the following axioms hold:

Axiom 1. α constant $\Rightarrow \alpha \in \Omega$:

Axiom 2. $x \in \mathcal{O} \implies N(x) \in \mathcal{O}$;

Axiom 3. $(x_i)_{i \in N} \in \mathcal{O}^N \Longrightarrow S_{i=1}^{\infty} x_i \in \mathcal{O}$.

If σ is a TNF- σ -algebra on U, the pair (U, σ) is called a TNF-measurable space.

Obviously, both Axiom 2 and Axiom 3 hold if and only if both axiom 2 and the following axiom 5 hold.

Axiom 3.
$$(x_i)_{i \in \mathbb{N}} \in \mathbb{O}^{\mathbb{N}} \implies T_{i=1}^{\infty} x_i \in \mathbb{O}$$
.

Particularly, if N_o : N_o (x) =1-x for all xe σ , in the case, then TNoF- σ -algebra is a TF- σ -algebra as in [1].

Definition 2.4. Let (U, ξ) and (V, σ) be TNF-measurable space and $f: U \longrightarrow V$ a mapping. The mapping f is called a TNF-measurable mapping from (U, ξ) into (V, σ) if and only if

$$f^{-1}(\sigma) = \{x \circ f \mid x \in \sigma\} \subset \xi.$$

Proposition 2.1. Let (V, σ) be a TNF-measurable space and $f: U \longrightarrow V$ a mapping. Then $f^{-1}(\sigma)$ is a TNF- σ -algebra on U and is the smallst of all TNF- σ -algebras ξ on U making f a TNF-measurable mapping from (U, ξ) into (V, σ) .

Definition 2.5. Given any σ -algebra \mathcal{A} on U, $\mathcal{L}(\mathcal{A})$

denotes the family of all measurable functions from (U,A) into ([0,1],B).

Definition 2.6. A TNF- σ -algebra σ on U is said to be generated if and only if there exists a σ -algebra $\mathcal A$ on U such that

$$\sigma = \mathcal{Z}(\mathcal{A}).$$

Proposition 2.2. Let $\mathcal A$ be a σ -algebra on U, and T a measurable t-norm. Then for each negation N, $\mathcal J(\mathcal A)$ is a TNF- σ -algebra on U.

Definition 2.7. Given any family $\mathcal A$ of fuzzy sets on U , $\mathcal O_{\text{TN}}(\mathcal A)$ denotes the smallest TNF- σ -algebra on U containing $\mathcal A$ as a subfamily.

Theorem 2.3. Let T be a continuous t-norm and N a negation Let V be a nonempty set, \mathcal{O} a generated TNF- \mathcal{O} -algebra on V and $f:U \longrightarrow V$ a mapping. Then $f^{-1}(\mathcal{O})$ is a generated TNF- \mathcal{O} -algebra on U.

III. TNF-measures on TNF-measurable space

In this section, we first give a definition of finite TN-fuzzy measure on TNF-measurable space. Then we show that each finite TN-fuzzy measure is a T.N-fuzzy measure. Next, we study the relationship between TN-fuzzy measure and integrals. Finally, we give a definition of TN-non-additive-fuzzy measure on TNF-measurable space.

Definition 3.1. Let T be a measurable t-norm, N a negation S the N-dual of T, and (U, σ) a TNF-measurable space. A mapping m: $\sigma \longrightarrow \mathbb{R} = [0, \infty)$ is called a finite TN-fuzzy measure or TNF-measure for short, if and only if fulfills the following properties:

(TNFM1). m(0) = 0;

(TNFM2). m(T(x,y))+m(S(x,y))=m(x)+m(y) for all $x,y\in\sigma$; (TNFM3). $\forall (x_n)_{n\in\mathbb{N}} \subset \sigma$, $(x_n)_{n\in\mathbb{N}} | x$, $x\in\sigma \Rightarrow (m(x_n))_{n\in\mathbb{N}} | m(x)$ If m is a TNF-measure on TNF-measurable space (U, σ), the (U, σ ,m) is called a TNF-measure space.

Note that in (TNFM3) it is necessare to require $x=\sup_n f$ f explicitly. From [3] we know that in general the supremum of a sequence of elements in f need not be an element of f.

Of couse, the finite T-fuzzy measures considered in [1] are now finite TN. F-measures in this more general context, where N.: N. (x)=1-x for all $x \in \sigma$.

Theorem 3.1. Let T be a measurable t-norm, N a negation and σ both a TN-fuzzy and TN-fuzzy σ -algebra on U. Then each finite TNF-measure on (U, σ) is a ToNF-measure.

Theorem 3.2. Let (U, \mathcal{A}) be a measurable space, T a measurable t-norm, N a negation, S a N-dual of T, and P a finite measure on (U, \mathcal{A}) such that P(U)>0 and define

$$m: \mathcal{J}(\mathcal{A}) \longrightarrow \mathbb{R} = [0, +\infty)$$

by $m(x) = \int x dP$ for all $x \in \mathcal{J}(\mathcal{A})$, then m is a finite TNF-measure if and only if the pair (T,S) fulfills the functional equation

$$T(x,y)+S(x,y) = x+y$$
 (3.1)

Proposition 3.3 Let T_S be a measurable t-norm,N a negation S a N-dual of T_S such that (3.1) holds, (U, $G_S = \mathcal{J}_{TN}(\mathcal{A})$) a T_S NF-measurable space, $0 < s < +\infty$,m a T_S NF-measure on (U, G_S). Then the following assertions are equivalent:

(i).m is an integral [i.e., there exists a finite measure P on (U, A) such that for all $x \in C_s$ $m(x) = \int x dP$ holds];

(ii) m is additive [i.e., for all $x, y \in \sigma_s$: $x+y \in \sigma_s$ \Rightarrow m(x+y) = m(x)+m(y);

(iii).m is null-continuous from above [i.e.,when $x_n \mid 0$, $x_n \in \sigma_s$, $n=1,2,\cdots$, $\longrightarrow m(x_n)_{n \in \mathbb{N}} \mid 0$].

Proof. Since (i) (ii) and (i) (iii) by the integral convergence theorem (cf.,[1]). We only have to show the validity of (iii) (ii). $\forall x \in \sigma_s$, $y \in \sigma_s$, $x+y \in \sigma_s$, Let $x = x y_0 = y_1, \dots, x_{n+1} = x_n (x_n, y_n)$, $y_{n+1} = x_n (x_n, y_n)$, from [3] $x_n = x_n (x_n, y_n)$. Thus

$$m(x)+m(y) = m(T_{S}(x,y))+m(S_{S}(x,y))$$

$$= m(x_{1})+m(y_{1})$$

$$= m(T_{S}(x_{1},y_{1}))+m(S_{S}(x_{1},y_{1}))$$

$$= m(x_{2})+m(y_{2})=\cdots = m(x_{n}) + m(y_{n}), \forall n \in \mathbb{N},$$

by the null-continuouty from above of $m \Rightarrow \lim_{n \to \infty} m(y_n) = 0$, so that

$$m(x)+m(y) = \lim_{n \to \infty} (m(x_n)+m(y_n)) = m(x+y).$$

Theorem 3.4. Let T be a measurable t-norm, if T fulfills T(x,y)=0, when $x,y\in F,x\bigvee y<1$, $1-a\leqslant x+y\leqslant 1+a$ and $1-a\leqslant N(x)+N(y)\leqslant 1+a$ for a given $a\in (0,1]$, S a N-dual of T.Then the family of all finite TNF-measures on (U,σ) to be a family of zero measure.

Proof. Since, when $N(x) \wedge N(y) > 0$, $1-a \le x+y \le 1+a$ and $1-a \le x+y \le 1+a$ $N(x)+N(y) \le 1+a$, S fulfills:

$$S(x,y) = N(T(N(x),N(y))) = 1.$$

When $\frac{1}{2}(1-a) \le b \le \frac{1}{2}(1+a)$, $m(b) = \frac{1}{2}(m(T(b,b)) + m(S(b,b))) = \frac{1}{2}m(1)$. Choose $x \in [\frac{1}{2}(1+a), \frac{1}{2}(1+3a)M]$, owing to $1 \le \frac{1}{2}(1-a) + x \le 1+a$, therefore

$$m(x)+m(\frac{1}{2}(1-a))=m(T(x,\frac{1}{2}(1-a))+m(S(x,\frac{1}{2}(1-a))=m(1),$$

$$m(x)=m(1)-m(\frac{1}{2}(1-a))=\frac{1}{2}m(1),$$
again choose $x \in (\frac{1}{2}(1-3a) \vee 0, \frac{1}{2}(1-a)]$, from continuty from the law of many $1 \leq x \leq 1 \leq x \leq 1$

from

below of m and
$$1 \le x + \frac{1}{2}(1 + 3a) \land 1 \le 1 + a$$
,
 $m(\frac{1}{2}(1 + 3a) \land 1) = \frac{1}{2}m(1)$,
 $m(x) = m(T(x, \frac{1}{2}(1 + 3a) \land 1)) + m(S(x, \frac{1}{2}(1 + 3a) \land 1)) - m(\frac{1}{2}(1 + 3a) \land 1) = m(1) - \frac{1}{2}m(1) = \frac{1}{2}m(1)$.
Since $a > 0 \implies \exists n \in \mathbb{N}$ such that $\frac{1}{2}(1 + (2n+1)a) > 1$,

when $x \in (0,1)$,

$$m(x) = \frac{1}{2}m(1)$$
.

By the continuty from below of m, we obtain

$$m(1) = \frac{1}{2}m(1)$$

 $m(1) = 0$ $m=0$.

The proof is completed.

Proposition 3.5. Let (U, σ) be a TNF-measurable space, m_1 a TNF-measure on $\{\alpha \mid \alpha \in [0,1]\}$. Any taken $u \in U$, $\forall x \in \sigma$, defining:

$$m(x) = \begin{cases} m_1(x(u_o)) & x(u_o) > 0 \\ 0 & x(u_o) = 0 \end{cases}$$

then m is a TNF-measure on (U, σ)

Theorem 3.6 Let (U, ξ) and (V, σ) be TNF-measurable spaces and $f: (U, \xi) \longrightarrow (V, \sigma)$ a TNF-measurable mapping. If m is a TNF-measure on (U, ξ) , the

$$\overline{m}: \ \mathcal{O} \longrightarrow \mathbb{R} = [0, \infty)$$

$$z \longmapsto m(f^{-1}(z)) = m(z \circ f)$$

a TNF-measure on (V, σ) .

Proof. (i)
$$\overline{m}(0) = m(f^{-1}(0)) = m(0 \circ f) = m(0) = 0$$
.
Since $\forall u \in U$ $f^{-1}(T(z,w))(u) = ((T(z,w)) \circ f)(u)$

$$= T(z,w) \circ f(u) = T(z(f(u)), w(f(u)))$$

$$= T((z \circ f)(u), (w \circ f)(u))$$

$$= T(f^{-1}(z)(u), f^{-1}(w)(u))$$
i.e., $T(z,w) \circ f = T(z \circ f, w \circ f), \text{ where } z, w \in \sigma$.

Thus (ii) $\forall z, w \in \sigma$,
$$\overline{m}(T(z,w)) + \overline{m}(S(z,w))$$

$$= m(f^{-1}(T(z,w)) + m(f^{-1}(S(z,w)))$$

$$= m(T(z,w) \circ f) + m(S(z,w) \circ f)$$

$$= m(T(z \circ f, w \circ f)) + m(S(z \circ f, w \circ f))$$

$$= m(z \circ f) + m(w \circ f) = \overline{m}(z) + \overline{m}(w)$$
(iii) $\forall z, e \in \sigma$, $n \in \mathbb{N}$, $(z_n)_{n \in \mathbb{N}} \neq z$, $z \in \sigma$

$$(\overline{m}(z_n))_{n \in \mathbb{N}} = (m(z_n \circ f))_{n \in \mathbb{N}} \neq m(z \circ f) = \overline{m}(z)$$
.
The theorem is proved.

Corollary 3.7. Let (U, ξ) and (V, σ) be TNF-measurable spaces and $f: U \longrightarrow V$ a mapping. Assume that Tis continuous and assume that both ξ and σ are generated and $\xi = \mathcal{J}(\mathcal{A})$, $\sigma = \mathcal{J}(\mathcal{D})$, and f is a measurable mapping from (U, \mathcal{A}) into (V, \mathcal{D}) , m a TNF-measure on (U, ξ) , then

$$\overline{m}: \sigma \longrightarrow [0, \infty)$$

$$z \longmapsto m(f^{-1}(z)) = m(z \circ f)$$

is a TNF-measure on (V, σ) .

Definition 3.2. Let T be a measurable t-norm,N a negation, S the N-dual of T and (U, σ) a TNF-measurable space. A mapping m: $\sigma \longrightarrow \mathbb{R} = [0, \infty)$ is called a finite TN-non-additive-fuzzy measure or TNNF-measure for short, if and only if it fulfills the properties:

(TNNFM1) m(O)=O;

(TNNFM2)
$$\forall x, y \in \sigma$$
, $x \leqslant y \Longrightarrow m(x) \leqslant m(y)$ (Monotonicity);
(TNNFM3) $\forall \{x_n\} \subset \sigma$, $x_n \nmid x$, $x \in \sigma \Longrightarrow m(S_{n=1}^{\infty}) = \lim_{n \to \infty} m(x_n)$;
(TNNFM4) $\forall \{x_n\} \subset \sigma$, $x_n \nmid x$, $x \in \sigma \Longrightarrow m(T_{n=1}^{\infty}) = \lim_{n \to \infty} m(x_n)$.

References

- [1] E.P.Klement, Characterization of Fuzzy Measures Costructed by Means of Trianguear Norm, J.Math.Anal.Appl 86(1982) 345-358.
- [2] Yu Yandong, Triangular Norm and TNF-sigma-algebras, Fuzzy Sets and Systems.16(1985) 251-264.
- [3] E.P.Klement, Construction of fuzzy σ -algebras using triangular norms, J.Math.Anal.Appl. 85(1982) 543-565.
- [4] Ma Jifong and Zhang Wenxiu, Some Notes on T-Fuzzy Measures, Fuzzy Math. 2(1986) 69-74
- [5] Wang Zhenyuan, Asymptotic structural characteristics of Fuzzy Measure and Their Applications, Fuzzy Sets and systems. 16(1985).
- [6] Wang Peizhuang, Theory of Fuzzy Sets and Its Applications, Shanghai Science technology Press, 1983.
- [7] Sugeno.M. Theory of Fuzzy Integrals and Its Applications, Ph.D. Ttesis, Tokyo. Inst. of Technol Tokyo. 1974.
- [8] Dubois.D and Prade.H, Fuzzy Sets and Systems: TheOry and Application, Academic Press, New York, 1980.
- [9] Zhang Wenxiu, Foundations of Fuzzy Mathematics, Xian Jiaotong University Press, 1984.
- [10] Zhai Jianren, Liu Shiye and Su Quansheng, Autoconvergence Theorem of Fuzzy Measure Sequences, Journal of China civil aeronautial engineering institute. 2(1986).
- [11] Liu Shiye, Zhai Jianren and Su Quansheng, Fuzzy Measurable Functions and Fuzzy Measurable Transformations, Journal of Hebei Normal University. 2(1986).