The Fuzzy Integral and the Convergence Theorems
Qiao Zhong

Hebei Institute of Architectural Engineering Zhangjiakou, Hebei, China

Abstract

In this paper, some properties of the fuzzy integrals on the fuzzy sets are discussed, and some necessary and sufficient conditions for the convergence of a sequence of the fuzzy integrals are given.

*1. The Fuzzy Integral on the Fuzzy Set

In this paper, we shall further discuss the fuzzy integrals on the fuzzy sets introduced in [3,5,6], some new properties of the fuzzy integrals on the fuzzy sets will be discussed, and some convergence theorems of a sequence of the fuzzy integrals will be proved.

All concepts and signs not defined in this paper may be found in [1,2,3,4,5,6].

Throughout this paper, let X be a classical nonempty set, $\mathcal{F}(X) = \{ \Delta; \Delta: X \rightarrow \{0,1\} \}$ be the class of all fuzzy subsets of X, $\mathcal{F} \subset \mathcal{F}(X)$ be a fuzzy σ -algebra of fuzzy sets, $\mu: \mathcal{F} \rightarrow [0,\infty]$ be a fuzzy measure on (X, \mathcal{F}) , and

$$\inf\{a_{t}; a_{t} \in [0, \infty]\} = \infty.$$

Definition1.1 Let $A \in \mathcal{F}$ with $\mathfrak{u}(A) \subset \infty$. \mathfrak{u} is called pseudonull-subtractive with respect to A, if for any $E \in A \cap \mathcal{F}$, we have $\mathfrak{u}(E \cap B) = \mathfrak{u}(E)$, whenever $B \in \mathcal{F}$ and $\mathfrak{u}(A \cap B) = \mathfrak{u}(A)$.

Definition 1.2 μ is called null-subtractive (resp. null-additive), if we have $\mu(A \cap B^{C}) = \mu(A)$ (resp. $\mu(A \cup B) = \mu(A)$, whenever A, $B \in \mathcal{F}$ and $\mu(B) = 0$.

Definition 1.3 Let $\{f_n\} \subset \mathbb{N}$, $f \in \mathbb{N}$, $A \in \mathcal{F}$, $D = \{x; f_n(x) \rightarrow f(x)\}$.

- (1) If A = D, then we say $\{f_n\}$ converges to f everywhere on e, and denote it by $f_n \to f$ on A;
- (2) If $\mu(A \cap f) = f > \epsilon$) $\rightarrow 0$ for any given $\epsilon > 0$, then we say f_n ; converges in fuzzy measure μ to f on A, and denote it by $f_n \rightarrow f$ on A.

Lemma1.4 Let $f \in \mathbb{N}^+$, $F_{\mathbf{x}} = \{x; f(x) > \mathbf{x}\}$, $F_{\mathbf{x}} = \{x; f(x) > \mathbf{x}\}$, then $\lim_{\xi \to \mathbf{x} \to \mathbf{x}} F_{\mathbf{x}} = \lim_{\xi \to \mathbf{x}} F_{\mathbf{x}} = \lim_{\xi \to \mathbf{x} \to \mathbf{x}} F_{\mathbf{x}} = \lim_{\xi$

Theorem1.5 Let 3 be a classical \neg -algebra of X, u^* be a fuzzy measure on (X, 3). Whenever De 3 and f_n , f are 5-measurable functions and $f_n^{u^*}f$ on D, then $\int_D f_n du^* \rightarrow \int_D f du^*$, if and only if u^* is autocontinuous.

Theorem1.6 Let \mathcal{F} be a classical \mathcal{F} -algebra of \mathcal{X} , $\mathcal{\mu}^*$ be a fuzzy measure on $(\mathcal{X},\mathcal{F})$. Whenever \mathcal{D} and \mathcal{F}_n , \mathcal{F}_n and \mathcal{F}_n , \mathcal{F}_n and a constant \mathcal{F}_n and \mathcal{F}_n such that \mathcal{F}_n is null-additive. Definition1.7 Let $(\mathcal{X},\mathcal{F},\mathcal{Y})$ be a fuzzy measure space,

is defined by $\int_{\mathbb{A}} f d\mu = \sup_{\mathbf{x} \in [0,\infty]} \left[\mathbf{x} \wedge \mathbf{y} (\mathbf{x} \wedge \mathbf{F}_{\mathbf{x}}) \right]$

where $\mathbb{F}_{\mathbf{x}} = \{x; f(x) \ge x\}, x \in [0, \infty]$.

Proposition 1.6 $\int_{\mathbb{A}} f d\mu = \sup_{\alpha \in [0,\infty)} [\alpha \wedge \mu(A \cap F_{\alpha})] = \sup_{\alpha \in (0,\infty)} [\alpha \wedge \mu(A \cap F_{\alpha})].$

Proposition 1.9 $\int_{\mathbb{A}} f d\mu = \sup_{\alpha \in [0,\infty)} \left[\frac{(A^{\Lambda} F_{\alpha})}{\alpha \in [0,\infty]} \right] = \sup_{\alpha \in [0,\infty]} \left[\frac{(A^{\Lambda} F_{\alpha})}{\alpha \in [0,\infty]} \right].$

where $F_{\tilde{\alpha}} = \{x; f(x) > \alpha\}, \alpha \in [0, \infty]$.

Proof. We only prove $\int_{\mathbb{A}} f d\mu = \sup_{\alpha \in [0,\infty]} \chi(A^{\alpha}F_{\alpha})$.

By using the monotonicity of μ , we have $\mu(\underline{A} \cap F_{\underline{x}}) > \mu(\underline{A} \cap F_{\underline{x}})$ for any $x \in [0, w]$, and therefore, $\int_{\underline{A}} f d\mu > \sup_{x \in [0, w]} [x \setminus \mu(\underline{A} \cap F_{\underline{x}})]$. We

assume that $\int_{\mathbb{A}} f d\mu > \sup_{\mathbf{x} \in [c, \omega)} \mathbf{u}(A \cdot F_{\mathbf{x}}) = b$, then there exists $\mathbf{x} \in [c, \omega]$ such that $\sup_{\mathbf{x} \in [c, \omega]} \mathbf{u}(A \cdot F_{\mathbf{x}}) > b + \varepsilon$, and therefore, there $\mathbf{x} \in [c, \omega]$

exists x_0 , such that $x_0 \setminus \underline{u}(A \cap F_{x_0}) > b + \varepsilon$, namely, $x_0 > b + \varepsilon$ and $\underline{u}(A \cap F_{x_0}) > b + \varepsilon$. We have $\underline{u}(A \cap F_{\overline{b+\varepsilon}}) > \underline{u}(A \cap F_{x_0}) > b + \varepsilon$. Therefore,

 $\sup_{\mathbf{x} \in [\mathbf{c}, \mathbf{w}]} \mathbf{x} \cdot \mathbf{y}(\mathbf{A} \cdot \mathbf{F}_{\overline{\mathbf{x}}})] \gg (\mathbf{b} + \mathbf{\epsilon}) \wedge \mathbf{y}(\mathbf{A} \cdot \mathbf{F}_{\overline{\mathbf{b} + \mathbf{\epsilon}}}) = \mathbf{b} + \mathbf{\epsilon} > \mathbf{b} . \text{ It is a contradiction.}$ tradiction. The proof of the proposition is complete.

Proposition 1.10 $\int_{\underline{A}} f d\underline{u} = \sup_{E \in \mathcal{B}(f)} [(\inf_{x \in E} f(x)) \wedge \underline{u}(\underline{A} \cap E)]$

=
$$\sup_{\mathbb{E}} \{ (\inf_{\mathbb{E}} f(x)) \wedge \mathfrak{u}(\mathcal{A} \cap \mathbb{E}) \}$$

where $\mathfrak{B}(\mathbf{f})$ is the classical τ -algebra generated by \mathbf{f} . (Obviously, $\mathfrak{B}(\mathbf{f})$

Proof. First, for any given ∞ elo, ∞), we have $\inf_{x \in F_{\infty}} f(x) \ge \infty$.

Since $F_x \in \mathcal{L}(f)$, then $[x \wedge y(A \cap F_x)] \leq \sup_{E \in \mathcal{L}(f)} (\inf_{x \in E} f(x)) \wedge y(A \cap E)$.

Therefore, $\int_{\mathbb{A}} f d\mu \leq \sup_{E \in \mathfrak{G}(f)} \{ (\inf_{x \in E} f(x)) \wedge \mu(\widehat{A} \cap E) \}.$

Furthermore, since $\mathfrak{B}(f)\subset \mathfrak{F}$, then

$$\sup_{E \in \mathcal{B}(f)} \{ (\inf_{x \in E} f(x)) \land \underline{u}(\underline{A} \land E) \} \leq \sup_{E \in \mathcal{F}} \{ (\inf_{E} f(x)) \land \underline{u}(\underline{A} \land E) \}.$$

Finally, for any given \mathbb{E}_{ϵ} , if we take $x' = \inf_{\mathbb{E}(x) > 0} f(x)$,

then $E = F_{\alpha}$, and therefore, $u(A \cap E) \leq u(A \cap F_{\alpha})$ and

inf f(x)) $\lambda y(A \cap E) \leq \langle \lambda y(A \cap F_{x'}) \leq \int_{A} f dy$. It follows that E(x) > 0

 $\sup_{\Xi\in\mathcal{F}} (\inf_{\Xi(x)} f(x)) \wedge \underline{u}(A \wedge \Xi) = \int_{A} f du. \text{ The proof of the proposition}$ is complete.

Theorem1.11 The fuzzy integrals on the fuzzy sets satisfy the following properties:

- (1) If u(A) = 0, then $\int_A f du = 0$;
- (2) If $\int_{A} f du = 0$, then u(A) = 0;
- (3) If $f_1 \le f_2$, then $\int_A f_1 du \le \int_A f_2 du$;
- (4) If $A \subseteq B$, then $Afdu \in Bfdu$;
- (5) $\forall a \in \{0, \infty\}$, $\int_A a du = a \wedge u(A)$;
- (6) $\int_{A} (f_1 \vee f_2) du > \int_{A} f_1 du \vee \int_{A} f_2 du$;
- (7), $_{A}(f_{1}\wedge f_{2})du_{5}$, $_{A}f_{1}du_{A}$, $_{A}f_{2}du_{5}$;
- (8) $_{\Lambda DB} fd\mu > _{\Lambda} fd\mu \vee _{B} fd\mu ;$
- (9) $A_{1B}fdu \approx A_{1A}fdu \wedge B_{1A}fdu$;
- (10) $\int_{\Lambda} (f+a) d\mu \leq \int_{\Lambda} f d\mu + \int_{\Lambda} a d\mu$, $a \in [0, \infty)$, $f \in M^+$;
- (11) $\forall a \in [0, \infty)$, if $|f_1 f_2| = a$, then

Proof. We only prove (2),(3),(5),(10),(11).

- (2) Let Afdu = 0 and $u(AnF_0) = c>0$, by using Lemma1.4, we have $AnF_1 \wedge AnF_0$ as $n \to \infty$. It follows from the continuity from below of u that $u(AnF_1) \to u(AnF_0) = c$. Therefore, there exists n_0 such that $u(AnF_1) \to u(AnF_0) = c$. We have $Afdu = \sup_{x \in [c,\infty)} u(AnF_x) \to \frac{1}{n_0} u(AnF_1) \to \frac{1}{n_0} u(AnF_1$
- (3) Let $f_1 \le f_2$, $F_x^k = \{x; f_k(x) > x\}$, k=1,2. Since $\mu(A : F_x^1) = \mu(A : F_x^2)$, then $A_1^f d\mu = A_2^f d\mu$.
- (5) Since $F_{\mathbf{x}} = \{\mathbf{x}; \ \mathbf{a} > \mathbf{x}\} = \{\mathbf{x}, \ \mathbf{x} \in \mathbf{x}\}$ if $\mathbf{a} = \mathbf{x}$,

then $\int_{\mathbb{A}} ad\mu = \sup_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{u}(\mathbf{A} \cdot \mathbf{F}_{\mathbf{x}}) \right] = \sup_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{u}(\mathbf{A} \cdot \mathbf{F}_{\mathbf{x}}) \right]$ $= \sup_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{u}(\mathbf{A}) \right] = \sup_{\mathbf{x}} \left[\mathbf{u}(\mathbf{A}) \cdot \mathbf{u}(\mathbf{A}) \right]$

(10) By using proposition1.10, we have

$$\int_{\mathbb{A}} (f+a) du = \sup_{\mathbb{E} \in \mathbb{A}} (\inf(f(x)+a)) \cdot u(\mathbb{A} \cdot \mathbb{E})$$

$$= \sup_{\mathbb{E} \in \mathbb{A}} (\inf f(x)) \wedge u(\mathbb{A} \cdot \mathbb{E}) + (a \wedge u(\mathbb{A} \cdot \mathbb{E}))$$

$$= \underbrace{\int_{\mathbb{A}} f du}_{\mathbb{A}} + \underbrace{\int_{\mathbb{A}} a du}_{\mathbb{A}} .$$

(11) Let $|f_1 - f_2| \le a$, since $f_1 \le f_2 + a$, then

 $\int_{\mathbb{A}} f_1 d\mu = \int_{\mathbb{A}} (f_2 + a) d\mu \leq \int_{\mathbb{A}} f_2 d\mu + a \cdot \mu(A) \leq \int_{\mathbb{A}} f_2 d\mu + a ,$

therefore, $\int_A f_1 \mathrm{d} u \leqslant \int_A f_2 \mathrm{d} u + a$. Analogously, we can prove

 $\int_{\mathbb{A}}f_2d\mu = \int_{\mathbb{A}}f_1d\mu + a \text{ . Thus, we have } \int_{\mathbb{A}}f_1d\mu - \int_{\mathbb{A}}f_2d\mu_1 = a.$

Theorem1.12 $\int_{\mathbb{A}} f du < \infty$, if and only if there exists $\mathbf{d}_{\mathbf{c}}(\mathbf{c}, \infty)$,

much that u(AIFx) - w.

Proof. If there exists $x_0 = (0, \infty)$, such that $u(x_0) = a \cdot x$, Then $u(A, F_{\times}) = u(A, F_{\times_0}) = a$, for any $\times > \times_0$. Consequently, $\int_{\mathbb{R}} f d\mu = \sup_{\mathbf{x}} \left(\mathbf{u}(\mathbf{x}_{1} \mathbf{F}_{\mathbf{x}}) \right) \sup_{\mathbf{x} \in \mathbf{x}_{0}} \mathbf{u}(\mathbf{x}_{1} \mathbf{F}_{\mathbf{x}}) = \mathbf{x}_{0} / \mathbf{a} = \mathbf{u}.$

Conversely, if for any $x \in [0, \infty)$, $\mu(A \times x) = \infty$, then

$$\int_{A} f d\mu = \sup_{\mathbf{x} \in \mathcal{C}(\mathbf{x})} \left[\mathbf{x} \setminus \mathbf{u}(A, \mathbf{F}_{\mathbf{x}}) \right] = \sup_{\mathbf{x} \in \mathcal{C}(\mathbf{x})} \mathbf{x} = \mathbf{x}.$$
Theorem 1.13 Let $A \in \mathcal{B}$, $\mathbf{x} \in \mathcal{O}$, \mathbf{x}), then

(1) $\int_{A} f du \ge x \iff \forall \exists \in [0, x), \ u(A \mathbb{F}_{3}) \ge x \iff u(A \mathbb{F}_{x}) \ge x$; $_{A}$ fd $\mu \sim x \Leftrightarrow \exists s \in [0, x)$, such that $\mu(A : F_{\mu}) \sim x \Longrightarrow \mu(A : F_{x}) \sim x$ -> µ(A F=)< ×

(3) $\int_{\Lambda} f du = x < y = (0, x), \quad \mu(\Lambda F_3) > x > \mu(A F_3);$ Particularly, if $\mu(A) < \infty$, then

$$\int_{A} f d\mu = \times \iff \tilde{u}(\tilde{A}_{x} F_{x}) > \times \Rightarrow \tilde{u}(\tilde{A}_{x} F_{x}).$$

Proof. (1) It is sufficient to consider the case $\star \cdot (o. w)$. The $\mu(\S_{\cdot}F_{\cdot})$ > imes for any \S_{\cdot} \S_{\cdot} , then

$$\int_{\mathbb{A}} f du > \sup_{x \in \mathbb{A}} \langle u(A_x F_x) \rangle > \sup_{x \in \mathbb{A}} \langle x \rangle = \sup_{$$

On the other hand, if there exists $\beta = x$, such that $\mathbb{L}(\mathbb{Q}_{\mathbb{R}_{p}})$, then $\mathbb{u}(\mathbb{A}_{\mathbb{R}_{p}}) = \mathbb{u}(\mathbb{A}_{\mathbb{R}_{p}})$ whenever $\mathbb{R}_{>>>}$, thus de have

$$\int_{\mathbb{A}} f d\mu = \sup_{r \in \mathbb{N}} r \cdot \mu(A \cdot F_r) / \sup_{r \in \mathbb{N}} r \cdot \mu(A \cdot F_r) / A \cdot F_s / A \cdot F_s$$

The equivalent relations are proved.

12) If $\int_{\mathbb{A}} f d\mu > x$, then there exists $x_0 > x$, such that $\int_{\mathbb{A}} f d\mu > x_0$. It follows, by using (1), that $\mu(A \setminus F_0) > x_0$, thenever $\mu(A \setminus F_0) > \mu(A \setminus F_0) > \mu(A \setminus F_0) > \mu(A \setminus F_0) > x_0 > x_0$.

On the other hand, let $\mu(A_1F_{\overline{x}}) > \times$, if $A_1 \times A_2 \times A_3 \times A_4 \times A_4 \times A_5 \times A_5$

The equivalent relations are proved.

By using (1) and (2) and Lemma1.4 and the continuity of μ , we can obtain results given in (3).

Proposition 1.14 Let μ be null-subtractive (resp. μ be seudo-null-subtractive with respect to A). For any $A, B \in \mathcal{A}$, we have $A \cap B^{\mathbf{C}} = A \cap B^{\mathbf{C}} = A \cap A \cap A$ whenever $A \cap B^{\mathbf{C}} = A \cap A \cap A \cap A$.

In the following, we shall introduce the concept of Fmean convergence of a sequence of fuzzy measurable functions,
and we shall show that this concept is equivalent to convermence in fuzzy measure.

Definition1.16 Let $\{f_n\}\subseteq \mathbb{N}$, $f\in \mathbb{N}$, $A\in \mathcal{F}$. $\{f_n\}$ is said to F-mean converge to f on A , if

$$\lim_{n\to\infty}\int_{A}f_{n}-f|d\mu=0.$$

Theorem1.17 F-mean convergence is equivalent to convergence in fuzzy measure.

Proof. If $f_n \to f$ on A, then for any given E > 0, there exists n_e , such that $u(A \cap \{|f_n - f| > \frac{1}{2}\}) - e$ as $n > n_e$. It follows, by using Theorem1.13(1), that $\int_{A} |f_n - f| \, du = e$ as $n > n_e$. Namely, $\{f_n\}$ F-mean converges to f.

Conversely, if $\{f_n\}$ does not converge in fuzzy measure μ to f on A, then there exist $\ell>0$, $\ell>0$, and a sequence $\{n_i\}$, such that $\mu(A) \in \{f_n - f_1>0\}$) for every n_i . It follows that $\mu(A) \in \{f_n - f_1>0\}$ to find $\mu(A) \in \{f_n - f_1>0\}$ to for every $\mu(A) \in \{f_n\}$ does not F-mean converge to f.

*2. Convergence Theorems

liao [3,5,6] proved some convergence theorems of a seuence of the fuzzy integrals on the fuzzy sets. In this section, we shall give some necessary and sufficient conditions for the convergence of a sequence of the fuzzy interals on the fuzzy sets.

Definition 2.1 Let $\{f_n\} \subseteq \mathbb{N}^+$, $f \in \mathbb{N}^+$, $\mathcal{F}(\mathbb{N}^+)$ be the classical τ -algebra generated by all functions in \mathbb{N}^+ . For any given μ^* , we define $\mu^*(E) \triangleq \mu(A \cap E)$, for any $E \in \mathcal{F}(\mathbb{N}^+)$. Obviously, $\mathcal{F}(\mathbb{N}^+) \subseteq \mathcal{F}$, μ^* is a fuzzy measure on $(X, \mathcal{F}(\mathbb{N}^+))$, we call μ^* a fuzzy measure induced by μ and Λ .

Theorem2.2 (Transformation Theorem) Let (X, \mathfrak{F} , \mathfrak{u}) be a

Tuzzy measure space, $(X, \mathfrak{B}(\mathbb{D}^+), \mathfrak{u}^*)$ be the fuzzy measure space induced by \mathfrak{u} and $\mathbb{A}(\mathbb{A} \in \mathfrak{F})$, then

 $\int_{A} du = \int_{D} f du^*$, whenever $D \in \mathcal{G}(M^+)$.

Theorem2.3 For any given $A \in \mathcal{A}$, whenever $f_n, f_j - M^+$ and $f_n \to f$ on A, then $f_n \to A$ and $f_n \to A$ is and only if μ^* is autocontinuous, where μ^* is the fuzzy measure induced by μ and A.

Proof. Necessity: For any $D \in \mathcal{H}(M^+)$ and $f_n, f_j = M^+$, if u^* on D, then $f_n X_D \to f X_D$ on X, and therefore, $f_n \times_D \to f \times_D = f \times$

Sufficiency: If $f_n \to f$ on A, and u^* is autocontinuous, then $f_n \to f$ on X. By using Theorem1.5 and Theorem2.2, we have $\int_A f_n du = \int_X f_n du^* \to \int_X f du^* = \int_A f du$.

The proof of the theorem is complete.

By using Theorem1.17 and Theorem2.3, we can give the following statement:

Theorem2.4 For any given $A \in \mathcal{F}$, whenever $\{f_n, f\} \in \mathbb{N}^+$ and $\{f_n, f\} \in \mathbb{N}^+$ and only if u^* is autocontinuous, where u^* is the fuzzy measure induced by u and A.

Theorem 2.5 Let $\{f_n, f\} \subset \mathbb{L}^+$, $\mathbb{A} \in \mathcal{F}$, if $f_n \not= f$ on \mathbb{A} , then $\int_{\mathbb{R}^+} f d\mu \nearrow \mathcal{A}^{f} d\mu \ .$

Theorem2.6 Let f_n , $f_i = M^*$, A = G, if $f_n = f$ on A, and there exist n, and a constant $c = \int_A f du$ $(0 \le c)$, such that $u(A \cap F_c^n) = w$, then $\int_A f_n du = \int_A f du$.

Theorem2.7 For any given $A \in \mathcal{F}$, whenever $D \in \mathcal{F}(M^+)$, a.e. $f_n, f_i \cdot M^+$ and $f_n \to f$ on D (with respect to μ^*), and there wist n_i and a constant $c \in \mathcal{F}_{A}(D)$ fdu $(0 \circ c)$, such that $(1 \circ n_i) \circ (1 \circ n_i)$

Proof. By using Theorem1.6 and Theorem2.2, it is not difficult to prove this conclusion.

Note: Definition2.1 and Theorem2.2 given in this paper aroused by Professor Wang Zhenyuan.

The author would like to thank Professor Wang Zhenyuan for his many valuable helps.

References

- [1] Jang Zhenyuan, Asymptotic structural characteristics of Tuzzy measure and their applications, Fuzzy Sets and Systems, 16(1985), 277-290.
- [2] Jang Zhenyuan, The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl. 99(1984), 195-218.

- [3] Qiao Zhong, The fuzzy integral on the fuzzy set, Journal of Hebei Institute of Architectural Engineering (in Chinese), 2(1986).
- Qiao Zhong, Riesz's theorem and Lebesgue's theorem on the fuzzy measure space, BUSEFAL, 29(1987), 33-41.
- 15) Qiao Zhong, The structural characteristics of the fuzzy measure on the fuzzy σ -algebra and their applications, Journal of Hebei Institute of Architectural Engineering, (in Chinese), 1(1987).
- 161 Qiao Zhong, Convergence theorems of the sequence of the fuzzy integrals on the fuzzy sets, (in Chinese), May 1986. (submited to Journal of Fuzzy Mathematics).

Feb.1987.