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Hebei Institute of ‘rchitectural Engineering
Zhangjiakou, Hebei, China
Abstract
In this paper, some properties of the fuzzy integrals on
the fuzzy sets are discussed, and some necessary and suffi-

cient conditions for the convergence of a sequence of the

fuzzy integrals are given,

*¥1, The Fuzzy Integral on the Fuzzy Set

In this paper, we shall further discuss the fuzzy inte-
srals on the fuzzy sets introduced in [3,5,6], some new
nroperties of the fuzzy integrals on the fuzzy sets will be
iiscussed, and some convergence theorems of a sequence of
the fuzzy integrals will be proved,

A1l concepts and signs not defined in this paper may be
found in [1,2,3,4,5,6].

T™roughout this paper, let X be a classical nonempty set,
F(:)={s; 42 1—l0,1) 3 be the class of all fuzzy subsets of
£, %c () be a fuzzy o-algebra of fuzzy sets, us %-[o, 0]
he a fuzzy measure on (X, §E), and
ﬁ%f;f:%aﬁw,wh;&:&;fhﬂza}e%,va&a@pm'me
set of all fuzzy measurable functions on Ogﬂ?,ﬂ}{f;fgﬂ,f»@

. Je make the following conventions: sup{at; ate[o,uﬂ§=o,

ted

infila, ;s a,el o, § = 0.
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Definitionl.! Let ae¢ g with u(4)< o0 . u is called pseudo-
null-subtractive with respect to 4, if for any EeAnd , we
have u(E 1B)= u(E), whenever Be$ and u(4nB)= u(4).

Sefinitionl.2 u is called null-subtractive (resp. null-
Aditive), if we have p(aaB%)= u(4) (resp. u(i U B)= uld),
menever 4, Be f and u(B)= o .

Definitionl.3 Let 1fpicM , fel, Ae f, D:ix;fn(x)-9f(x)§.
(1) 1f A<D, then we say {f { converges to f everywhere on
s, and denote it by fnj;f on A 3

‘2) If E(@.\ﬁfﬂ- fI»t$ Y >0 for any civeny>o0, then we say

£ 1 converges in fuzzy measure il to f on A, and denote it

1y
by £o2f on o

i

Lemmal,lt Let Tel™, Fy=ix; f(x)r;, Fg=(x; f(x)>x, then

1iml",= lim Fe= F 2F-= 1im Fg= lim Fg
g=>ao’  Bwoieo TR T gk ¢ 3w O
1,21 )
Theoreml .5 Let % be a classical T-algebra of X, u¥* be

4 fuzzy measure on (X, § ). Whenever Def and f , f are 5o -

eaguranle functions and fnu-;f on D, then Dfndu*aijdu*,

if and only if p* is autocontinuous.
{11
Theorem! .6 Let & be a classical ~-algebra of X, u* be

. fuzzy measure on (X, ). wWhenever Dej and fn, f are %-

- s de.€Ce i s
measurable functions and fn-—»?-,f on D, and there exist n,

nd a constant cejpfdu*, such that w¥(ysup £i>c; D)< W,
i»n,

then fndu*-» J'D:Edu‘x', if and only if p¥ is null-additive.

“D
Definitionl.7 Let (X,%*, w) be a fuzzy measure space,



_,e%, fel’", The fuzzy integral of f on 4 with respect to p
‘s defined by S fdu = sup|xA R(AAE, )]

~+elo, o]
“here T =ix; f\x)>x;,xe;_o, w5

Propositionl. jAfdu —:e [(S)L}E)Ly A r(AnF, )] ;e(gugo T \u(Al}f )j -

Fronosition1.9 {,fdu = supiod R(AVF-)]= supix v u(AawF,)] .
A ~elo,00) » € [0, ]

“here TFg={x; f(x)>3,xej0, »;.

Proof. We only prove (,fdy = sup;x\u(AFg)].
~ o€jo, K]
By using the monotonicity of E , we have u(g\Fu) » u(AF )

'or any xe0, %, and therefore, fdu sup [x \ W(AFL) ). e

x€i0, ]
assure that J’Afd}g> sup « \ W(AFg) = b

?
e c, w]

sup, « \W(A W, )] >b+e , and therefore, there
e {0,007

then there exists
< >0, such that

*Xists %, such that x\u(A\F,)>b+ , namely, s >b+t and

l_vlf.,;:xfﬂ?xo) >b+y . We have E(QK\E‘EI?; Y > E(’@\F%) >b+v . Therefore,

sup x \u(AF= )1 2 (bte) A B(Q\FBQ) = b+¢ >b , Tt is a con-
eLe ‘)01 '

tradiction. The proof of the proposition is complete.

Prooositiont .10 SAfdg = g?p)}f inf f(x) ) Au(AnE) ]
BEe: xeli

= sup (inf £(x)) u(AnE) ]
’{;‘e} _,(X)>O

where Ja(f) is the classical T-algebra generated by f
‘Obviously, §3(f):= ;- )

L

Proof. First, for any givenxelo, ©), we have inf f(x) = x

xXelFy
Since FueZ(f), then |xAau(anF )]s sup | (inf f(xNw(aE)] .
E egz( ) xXel
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“herefore, gAfdu% t}s}l(lg)[\;:é £(x))Au(Aas) ],

Furthermore, since ®R(f)c %+, then

sup | (inf £(x))Au(AniB)] < sup | (inf £(x))Au(ArE)] .
Ee%!’f) xeE EL—@ E(x)>0

Finally, for any given Eedr, if we take x'= inf £(x)
~ E(x)>o0
then E =F_,, and therefore, u(AnE) s u(AnE,,) and
1n§ £)N(AE) s S AU(AE) ,afdu. It follows that
X)>0 ~

sup , (inf f(x))\u(A\E)k ,Afdu. The proof of the proposition
te'd T B(x)>o

ia complete.
Theoreml .11 The fuzzy integrals on the fuzzy sets satisfy

the following properties:

(1) If u(A) = o, then |, fdu = o ;
(2) If JAfdg = 0, then u(AFz) = o 3
(3) 1f £, £, , then )[ifng§)éf?du ;
(4) If 1<B, then , fdus pfdu ;

B
(5) vae,0, »), ,,adu=aru(h) ;
(6) , ,\(f1vf Ydu > /N\f1d15,\,“f d
SOINEVE SOLL ISR ALY UL PE N
(8) Nmfdu > ,\f uy, fdu ;
(9) /\mi‘du\ fdu,\ T3fdu H
(10), A’(f+a)dq <, pfdn + ,adu , ae,o, w), feM*;

(11) v ae,0, w), if {f4- £51523, then

£,du -, f,du g2,

be A IATZ2

Proof. We only nrove (2),(3),(5),(10),(11).
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(?) Let pfdu = 0 and u(ArFz) = c>0, by using Lemmal.l, we

nave AnFy »rﬁx’nl?a as n-» < , It follows from the continuity

from below of u that E(Q"FL)*"B(%‘FB) = ¢ . Therefore, there
2

exists n, such that p(AnF, ))_—% . Ve have

no
pfdu = sup |x \u(AF, ), >4 \u(A\Fl ))-— \-5 >0, It is a
‘ - XQLC w n
contradiction,

(3) Let fisf, , Fh=\x; £, (x)>x;, k=1,2. Since

A >
u(AW, )<= u(AWs), then Af,ldl{ A:‘C?du .

(5) Since é if a o «x
Fo=X: amx:=d

P N »
X if a=x,

then ,Aadu = sup, x VWAV, )]y sup, x v u(AnF )J

o, D 1= asX<W
= sup, x \u(A)jvO = avu(ha).
Osaéad

(10) By using propositionl,10, we have

, !\(:E'-fs:t)dl% = sup _ (inf(f(x)+a))\ u(ir3),
g Fe & E(x)>o0

'i

s Sup’ (1nf T(x)IN u(Aag) +(a\p(A\E)))
Te gt B(x)>0

{H

(11) Let ify- f5)sa , since f;&f,+a , then

21s

)qudg "/‘-(E +a)dy &,Qfgdg, + auls)s Jéfgdl‘}, + a,

therefore, J'Af,ldg'\\') f.du + a . Analogously, we can prove

{

,fodus ,fpdu + a . Thus, we have ‘,‘Ai} dn —.;/.\\}dep:ib a

~ Theoreml.1? , ,fdu< », if and only if there exists olgeir ),
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I N AT N .
ek that u(Anl xd = N

Tronf, Tf there exists x.< .0, %), such that ul. \{‘LO) =2 W,
er uliw'y) s uy(ﬁ:\\’ii‘xc) = a, for anv =% > %, . Conseqguently,

s fdu = sup VI(AWF ) v sup |« WAV ) s =78 o W
- %0 X, Xe e W,

Conversely, if for any xe,0, »), WA WF,) =w, then

I
<

iy

Re 0,N, Xele W,
Theorem! .13 Let 4e< y, xe,0, w), then

,afdu = sup | va(iFyg) ;) = sup x

¢
X
-e

1) s fduz < < > vee0, D, u(AF, )2 x <« = ulAdF)>

o fdu -~ » ¢>35¢lo, x),such that p(AF, )<x ==> u(iF)< «

-» pla \F;)‘- x 3

)L fdust e wlhiFyex = A F)s
S deg)x S u‘;\f:‘)>x 3 1:1!(&‘|F,‘)> X3

4

), fdu = x < > ¥ ye,0,%), nh F )= o o u(AFS);
Particularly, if u(A)< w, then
cafdn = s ulaFg e« u(ary).
roof., (_’;} Tt is sufficient to consider the case xe¢ (p. w).
nu( . \F..)>’ x for any ., . « , then

cpfdun s sup v w(EaFL) s sup L vx, = Sup L=

i

~ 5€,0,%, §€.0,%, S€10y %,

.

Un the other hand, if there exists g < x , such that
u( o) < o« , then (s ‘Fr‘) < ulaar ) whenever r>» ., thus
N AR 3 v

2 have

[

2afde = sun v (AW ), 0 sup v oA \Fr}k(ﬁvg(;;\;’\l?j)g %,
-~ e,y L, Tews W, ’

The equivalent relations are proved,
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2) If Sﬁfdui>-x, then there cxlsts *e > %, such ihat

. fdu 2 x.. Tt follows, by using (1), that u(i\F,) > «.,

)‘o %

E=

hensver . . x, « FParticularly, if we take . = , then

x< s « %, and therefore, Q(@\F;)a»gﬂé\F))b xe > X,

(m the other hand, let Q(@\F;)> x , if 2, yx, it follows
fyom Lemmal.,4 that A \E%‘w@ \F;. By the continuity from
wlow of u , we have Q(%nFan)-w>1£(@\F;), and therefore, there
oxists % > x, such that u(iF,) > x . Thus, we have

SafAR 2 xe vRIAF L) > % .

e equivalént relations are proved,

By using (1) and (2) and Lemmal.4 and the continuity of
il , we can obtain results given in (3).

Propositionl .14 Let 1 be null-subtractive {resp. 1 be
'seudo-null-subtractive with respect to A ). For any A,Be y,
u@hmmﬁéwcfmngﬁg whenever u(B)= 0 (resp.

u(A B = u(A) - w).

Propositioni .15 If qﬁis null-additive, then for any
5 Be &4, feli’, we have , aupfdn =, fdy, whenever u(B)= o.

Tn the following, we shall introduce the concept of F-
nean convergence of a sequence of fuzzy measurable functions,
and we shall show that this concept is eguivalent to conver-

rence in fuzzv measure,

is said

-

Definition1.16 Let {fnﬁu‘ Mo, fell, Ae p. {f3

o I"-mean converge to f on A , if

1im f—fth-:Oo
}_’]%"Q'}.‘%‘ n N



80

Theoreml .17/ F-mean convergence is equivalent to conver-
~ence in fuwzzy measure.
B . p
Proof, If fn~~’f on A , then for any given ¢ >0, there
xig (A~Sif - Tis%t ) as n3xn_. It
exists n., such that ulAnygit, 1255 )~ ¢ 2N, .

“0llows, by using Theorem!.13(1), that {,f -fidu .«

-

1s n »n,. Namely, f ; F-mean converges to f.
Conversely, if {fn§ does not converge in fuzzy measure n

“o f on A, then there exist ¢>0, >0, and a sequence{nig

, such that u(A v {|f, = £i>; )>7 for every n;. It follows
i ]

‘hat fA‘fn.” fhh%xc‘\g(ﬁl\;.fn.—:fizt; Y2 AT>0,for every

1 1

n; . That is to say, {f ;does not F-mean converge to f,

*¥2. Convergence Theorems

diao [3,5,6) proved some convergence theorems of a se-
uence of the fuzzy integrals on the fuzzy sets. In this
~ection, we shall give some necessary and sufficient condi-
+ions for the convergence of a sequence of the fuzzy inte-
rals on the fuzzy sets.

vefinition?.1 Let {fnﬁiy_g*, feMY, ©B(M') be the classical
v-algebra generated by all fumctions in Mf. For any given
.< $, we define uw(E) = pulAE), for any B« (M%),
(hviously, (%) < 5;, p¥ is a fuzzy measure on (X, 32(M%)),
e call w oa fuzzy measure induced by u and A .

Vel
Ta

Theorem?,? (Transformation Theorem) Let (X, u ) be a

- 9



ey measure space, (X, ®{1.F), u¥) be the fuzzy measure

space induced by genm,A,(Ar‘ﬁ), then
Lpfdu =,nfdu¥ , whenever De (MY).
w B o 1!
- *
Theorem?.3 For any given Ae =, whenever ;fn’fi -MTand

]‘l . a .
£, >fon i, then § \fdu-»,,fdu , if and only if w* is

o

utocontinuous, where u¥ is the fuzzy measure induced by u

and L.

Proof. Necessity: For any D€ @(M') and ;fn,fju-m*, if

u u* _
“n »f on 1), then fﬁxn“ > f XD on X, and therefore,
u
e xl)j;f‘AD on A . By hypothesis of the theorem, we have
n -
,&fn,uDdg ’J%f'&DdE»' It follows from Theorem2.2 that

,an;waLﬁ~-)fo hDdu*, namely, ;Dfndu* >)Dfdu*. It follows

, bv using Theoreml.5, that p* is autocontinuous.

)
Sufficiency: If fnwfif on A, and u¥ is autocontinuous,

U_')’Z
then f .- »f on X, By using Theoreml.5 and Theorem2.2, we

. -(‘_ £ 'P - . » K e f~ o . . H
\ave ,,{-\jnd u =) fd - T fdu )é’fdg .
"1e nroof of the theorem is complete,
By using Theoreml.,17 and Theorem?.3, we can give the
"ollowing statement:
B w . . Ao et . [ V.2 4
Meorem?.4 For any given Ae o whenever ‘fm,f5~ M and

o~
I

ni "-mean converges to f on A , then )Afndg ")’%fdg , if

nd only if u¥* is autocontinuous, where u* is the fuzzy mea-

sure induced by w and A,



Theorem? .l Let =fn’fs-Ef, M 5’ if in“ f on 4, and
were exist noand a constant ¢ s, ,\i‘dg (0sc¢), such that

A xF?”)._‘n, then

~
T

éfndlg 3 )lfdg,.

J

.0,F, gave the proofs of Theorem?.5 and Theorem?.6.

Theorer?.7 For any given Ae i3, whenever De ¢ (M%),
d.€. -

[P -Mtand £ >f on D (with respect tc u¥ ), and there

cist nyand a constant c 4 .

,me(OQd,Smthﬁ

ol

e - P N _ | . 1 : - . I
kw?i? Fo>c v i) e ’i”ml’étinmé )kaﬁﬂg, if and
o A4

nly if ¥ is null-additive,
"raof, Bv using Theoreml.6 and Theorem?.?, it is not

difficult to nrove this conclusion,

Mote: Definition?.1 and Theorem?,.,2 given in this paper
e oroused by Professor Jang Zhenyuan,
e author would like to thank Professor .Jang Zhenvuan

Tor is many valuable helng.,
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