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Iet IR = [~o,+»] o A weak order (see for example [1] , [2])

on IR can be given in following manner,

Definition 1 (3] : Bach mapping g: W=~ [0,1] such that
@(x9)y 1 =g(v:x) (1)
g (%)) + g(z,x)<§ 1 (2)
for each (x,y,z)e|§5 with y<z , is called a fuzzy relation
"less or equal" (FLE).

Definition 2 [3] ¢ The mapping <gstlﬁa—9 [0,1] given by the

identity

\/ &= : =1 = (3)
(x,7)e Qg (Xyy) = Q(¥yx)

where Q is a fixed FLE, is called a fuzzy relation "less than"

(F1L?) generated by FLE C o

Additionaly we distiuguish the following kinds of FLE.
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Definition 3 [3] ¢ Each FIE ¢ satisfying .
1
G (X27) AQ(TIX)LK B (&)
for each (X,¥)e |R'2 such that x ¢y , is called quasi-anti-

symetricale

Derinition 4 [[3] s Each FIE € satisfying the next conditions:
\vJ {xn}\l” x {g(‘ 1 Xp )\ \Lg(' 'X ) (5)
V{yn)}’l\y {g(ynﬂy)\Tg(Yo . ) (6)

is calied a contiuuous from above FIE,

Definition 5 [3] ¢ Any FIE ¢  unfuzzily bounds the real line
if it satisfies

I xelR %(x,-roo') :g(-oo,x') = 1 \7)

Let us look on the set of interval numbers. By on interval we
mean a closed bounded set of "real" numbers from IR
[a,b] = {x: agxgd}
If A is an intervel, we will denote its end points by A
and X . Thus A =(4,K] . The family of ali intervals will
be indicated by I(K) « We can extend the order relation, &
on R to I(R) as follows:
ALB iff A<B and ZX<F .
Moreover, we shall use the following "ordering" relation on I(R)
A<{B iff I<B .
A family of homogeneous interval numbers will be given by the map=

ping which is presented below,

Definition 6: Bach mapping J:E—=I(®) having the next pro-

perties:



J(-e0) = [=w,=c0] , (8)
T (+a0)o= [+og,+0] (9)
IxeR o {IXVE TEYL +oo (10)
IxeR Ixy-IxV =10 , “1)
V(7 e B xKy T(x) g T(Y) (12)

is called a homogeneous nondecreasing interval functione.

Iet T be the fixed homogeneous nondecreasing interval runce
tiones It generates the homogeneous family of interval numbers
TE) = {4, 3 xR, 4 = ‘](x)} '« Take into account the measurable
families of subsets in [|® , given by

B moe = {8 [=00=00] §

?)1-0@ = {¢, E-&-oo,-l-OOJ} ’

EERICE Bew' A =J(x)nB} ,
for each x¢lR where [B® is the usual Borel field in R"® .
Since the measures with uniform distribution are well suited for

the homogeneity of interval numbers, we propose to define such de-

numerable additive measures m, on each ’g)x (xe¢®R) that
they fulfilt
VxeR n (J(x)) =1 (13)

Y (x,c)e R x'J{x) AN (C Q_(x),c[):-c—:zzl-(-x—)- (14)

Then, for each pair (x,y)elRZ s bhere exists the unique product
. ime
measure m,.  on 'S")xy = {A, I BeB : A =(V XX 7)) o B}
Ca] with
W (4,B) & J(x)x I(3) m (A% B) = m(A)- m(B) . (15)
Since j@)_w and ?)_'_w are two=elements families, the class
of measurable subsets in J(x)xI(y) is given by ’?)X.’)' =
1A: 3 (B,O)x-?)x’(")\f)y: A= BKC} for each pair (x,y)¢ lM(lﬁe‘) =

R A '\IR*R o Thus the product measure m,, is explicitly gi-

]
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ven by (15), for each  (x,¥)¢ re

In agreement with the intuition, we can say that x(y 1in
degree equal to the measure of the set  §(t,s): t¢x), s5¢T(T),
t<s} for each (X3¢ W2 , Also, in like manner we can defi-

pe a degree of X <Y

Definition 7: The mapping gq @ G [0,1] sgiven by
J(Xy7) = mx;y({(t,s): t ¢ Wx), 8¢ WY), <8} (16)
for each  (X,¥)¢ &2 s is called a order with interval impreci-

sion (OII).

Definition 8: The mapping g g3 2= 0,17 given by
3(xs7) = m, ({By8): b €T, seXy)y t<sl) (17)
for each (x,y)&(ﬁe s 18 called a strict order with interval

imprecision (SO0II)e

It is very easy to check that if mapping J: E® S I(R) is
degenerate (isee ( = 0) then the OII and BOII describe respec-
tively the usual order relations & and < in K .
Consider now the case when A >0 o For any pair (x,y)elﬁ'z
with Xx<+o and JH=oc , using (13), (15), (16) and (17)

we have:

§(+oa,+oc) = m+w+w(*3(+oc)xj(+w\.) =1 (18)
§Qx,+ o) = mx+w'\‘3(x) x)(+oc)) =1 , (19)
Jee,x) =m,  \fx@) =0 , | (20)
gWi=oc) =my_ (¢r0) =0 , (21)
F=oe,5) = m_ (Ume) X)) =1, (22)
f’;(-«w,-oo) = m_w_w(’fn‘\-w) xTi=x)) =1 (23)

i;s(i-oo,i-w) = m+oo+u,(¢x ¢) =0 , (24)
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gg(+>rx) =m ,\Fx0) =0 , (25)
IsFatec) =my, Ux) xJ(#)) =1 (26)
Cglmony) = B o (M) x3F)) =1 (27)
Galimee) = my_ (20 =0 (28)
gs'\-w,-oc') = m_ N (gx@) =0 . (29)

From practical point—-viéw, all above result are sensible. Nextly

we have:
Theorem 13 The OII §  and S80II ¢, fulfil the condition (3).

Proof: For any peir (x,y)¢ M (E ), the condition (3) follows
from the identities (18) = (29)e If  (x,y)¢ B then the Fubi-
ni‘s Theorem (4] says Byy = Byy o Hence

J5l%¥) = mxyk‘{(t,s): t (XY, 8eI(F), t<al)=

r o (O XWX\ $(t,8)3 € eI(x)y 8 WY, ¥ 8Y) =
=1 - my ({(t,8)s t¢Ix), 8T, sgtl) =

1 = nyx({(s,’c]: seNy), t(x), sgtl) = ?S‘ \TsX) o I8

H

Theorem 23 If  (x,¥)e ®% and BICANRIEA; #(f then

1= ;355("'5@:) -3G))°% x<y

S(x,Y) = . - o 5 (30)
E-A-z Kﬁ(y) - _(x)) x>y
1= (S5 -3@)% x<y
3 (X7 = 28 31)
Ss 1 (= 1)2
E-A‘z (“SU\ -3(x)) KU

Proof: The identity (30) follows from (14) and (16). The identity
(31) is an immediave consequence of (3) and (30) « IB
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Theorem 3: If (x,y)¢ B° and T(x)<J(y then S(x,3) =1 .

Proof: «(x,y) = nn(‘{(t,s): teNx), 8eNY), tssY) =
= m (&) x3(3) =1 =

Theorem 4: If (x,y)e RZ and (y) {J{x) then S(Xy) =0

Preof: < (X,y] = Hqui(t,s)x teNRn, seAUY), tssl)g
ny(C Jx)y, S]] <AF)) =0 .M

Theorem 5: Any OII g is a FIE ,

Proof: Using the Theorem 2 we get

1 - é(xs.‘i) = 3 g\0eX) = lvx\{'\t,s): t ¢Ny), scWNx), t<a}) g
€y (LE,8)3 t€3(F),y 8¢ Ax), G&8Y) =
= €(7,x)

for each pair (x,y)c > o So, the condition (1) holds.

If (x,5)¢ M (K?) then the condition (2 )follows from the
identities (18) = (29)+ Suppose now that (x,y)etﬁz snd 2z =
= +o~ o Then, using (20), we obtain

SATY) + Q(+o0pX) = S( X)L T o
For the case, when (X,¥,%)¢ R’  and Y<3 , we get}
- if D(x)<7(2) then, m8ing the Theorem #,
1 - §(=.x) = 15/%“‘.7) 3
- if (y)<D(x) then, in like manner as above,
TiXY) = 0K & g(%92) =1 = S (Zyx) 3
- otherwise, we have S(x)) (z) and TF@EO Lx)
Thus for each (x,¥,3)¢ R® with x<y<%z we obtain Tz >
%T@3) Yy Tx)y WE)Y WDy Ux) . 8o, Jix)ay) # 4  and
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Y(xbn W=z) g P o Hence, by the identity (30), we gets
%‘(x,y) + S (2yx) =1 - 5152 (S(x) - Q(y))z + -532-2 C"S(x) - 3_(5))2 =
=1 + 5352 (T(x) - :;)_(zﬂ‘?‘ - (I(x) - '2_(7))2)$ 1

Moreover if y<x<z then T(x> W=z)) W(x)» L(y) and
Sz)Y Sy Sly)> L(x)” 2(y) e« It shows that I(x)n"WY¥) #0
and D(x)ad(3) # ¢ o Thus, by (30 ), we obtainz

Z(xs3) + S(3px) = -—2 bm - 2@)2 + -~2 (S - 1)<

¢ g2 (= - 3x))2 4+ A de (S(3) - 2=))2 =1

If y<a<x then T(x)> A(=)) Uy ed x>y )y
)/ ‘;(J)) 1(x)) 1(2)% 2(y) o Therefore, T (x)n7(7) = ¢ and
V(x)~ D(z2) ¢ ¢ o Using (30), we get:

Z(xy3) + 3 (29%) = -1‘&'2 (561 = 3@ S (S - 2(x))® =
=1+ 5%2 (3@ -12x)2 = (Ble)- N2) <1 .

The proef is ended. @

The last theorem together with the Theorem 1 shows that amy SOIL
igs a FII generated by OII., Furthermore, we have:

Theorem 6: Any OII unfuzzily bounds the real line.
Proof: See (18), (19), (22) and (23). M
Theorem 7: The OII &  is quasi-antisymmetrical in 7 (®) iff

the interval mapping J: H—™I (K ) has the property:
V (x,3)¢ B2 x$y o W) &) . (32)
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Proof: If x4y then x<y or x>y .« Suppose now that
X»J o Then, for the case TJ(y)< J(x) , the Theorem 4 shows
Z(%X,J) = 0 o Otherwise we have IJI(y)& I&)< FMiK T

and J(y)< I(x) or TF(y)< J(x) o Thus, by (30), we get:

~ 1 - Y rer)2 1 - 2 _ 1
= -7 - Jx =
Foon) = = (G0 - I®)C 5 (Gix) - Q)7 = 3
or ‘
~ - 1 : < ] 2 1 - -1 2 = 1
G (%7 PN (F) - 1x)¢ 22 (73 - 1) 3
8o, (32) is surficieat feor the quasi-antisymmetry, Suppese now

that there exists such pair (x,y)e Iiz that x)y and
J(x)=J(y) o Thus

~ 1 - 2 _ 1 2 _ 1
§eay) = == (J) - =) =20 =

WWe have seen that (32) is necessary for tne quasi-antisymmetry. Bl

Theorem 73 If the interval function J:R— I(&) 41is continuo-
us (i.ee J:R—>E and F:R>E are continuous) then OII

%. is continuous from above.

Proof: Let ixn} be fixed sequence tending from above to x&¢R .
If x =+a then X =+o for each ncB o By (18 ) and (19)
we gét { 5) because §(o 2 X )= ’g’(- sXp) =1 o Assume now that
x<d+sc o Of course there exists such N, that X, <+too for
each n)N, .
Using (22) we get 1 = @(=20,x ) = g(=0c,x) =1 . So,

{8 -o0y) PR 00rx) (»)
If yelR and D(y)‘{g(x) then J(y)< U(xn) fer each po-

sitive integer n . Taking into account the Theorem 5 we obtain
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o

{50.x )F 30 (x0)
because G (y,x,) =§(y,x) =1 .
If yelR and J(y)n J(x) + ¢ then there exists such positi-
ve integer N,% N, that J(y)a f](xn)#¢ for each n )N, .
Using (30) we obtain (**) from continuity of 7 .
If yeR Jx)<Wy) and )¢ J(y) then there exists
such Ny N that ’i'(xn)g J(y) .« Then the condition (**)
follows from the Theorem 4 because G(¥,x) =§'(y,xn) =0 .
Using (20) we get " z{é‘(-l-w,xn) =§(+oo,x) =0 o So,
{§"(+oo,xn).§\l, T ooyx)
The last result along with (%) and (*») pubs an end to the proof
of (5)e In like manner we can checlo the condition (6). K

All foregoing considerations can be generalized for the case

when the condition (14) is replaced by the following one

¢ = Jx)
X/ (x,c)e B 2J({x) A0 m ([ Txde Cl=F (-—--Z--—- )

where F: [{0,1]) = [0,1] is a continuous nondecreasing function
fulfilliné F(OYy=0 and F(1)=1 o

On the other side, the above considerations cannot be generali-
zed for the case when the interval function J: R— I (R) is
not homogeneous (i.e. there exists such pair (X9¥)e lR2 that
Tx) = 3x) #5(3) - 1) .
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