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FUZZY COMPLEMENTATION REVISITED

Herbert TOTH

A-1140 Wien, RiedstraRe 17-19, Austria

Abstract: This paper introduces new proposals for fuzzy subsetness and
fuzzy complementation, respectively. It is shown that the new
formaltism does exhibit quite nice properties: e.g. the complement_
ation paradox vanishes, and the complLement of a fuzzy set to another
(proper ') fuzzy set becomes available. More details about the
intuitive background can be found in [3].

1. Some general criticisms

e g e e s e ey o=

As the terminology itself strongly suggests, one would believe that ‘'fuzzy
set theory' and 'degree of membership' may have to do something with
either physical (a fuzzy set of tall men) or mental (the set of naturat
numbers) collections of things. On the other hand, by far the most people
fuzzy sets clearly are understood and used as a mathematical tool for
modelting vague concepts. Thus, a Logical component, at once, has one of
the Leading parts in the play, since concepts or notions are usually
formalized by predicates.

Therefore, it does not make me wonder, that set theoretical and Logicat
concepts, operations, and methods have freely been mixed together. As

a consequence thereof, during the Last few years a considerablLe number

of critical papers have appeared (for more details see [3]). But, and
this is the main idea behind my criticisms, we have to distinguish
carefully between the syntactical/Logical and the semantical/ontological
dimension in the theory of fuzzy sets. In other words, we must always be
aware of what we really have in mind: to handlLe/manipulate (collections
of) objects themselves (semantical dimension), or to handLe/maipulate
valuations (over collections) of objects (syntactical dimension), what_
ever meaning we associate to these valuations, like e.g. utitities,

probabitities, ‘'membership degrees' etc.
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As is well known, the two quite different operations of Logical

negation and set theoretical complementation arithmetically coincide
within the classical theories via the characteristic functions of sets
and predicates, respectively. And as a consequence of this

collapsing, we have only one generalized notion of fuzzy negation or com_
plLementation, respectively; therefore it is not astonishing at atl that
we get such intuitively curious results as have been criticized in [1],
_§4, in case n(x):=1-x is interpreted as a generalization of a set

theoretical operation.

Kabala's and Wroczinski's argumentation, adapted to our notations and
examples, is as follows: Let S denote the fuzzy set of 'reals much greater
than S5' (Figure 13), and Let R denote the fuzzy event ‘choosing a reat
numper xe[8,13] much greater than 5' (Figure 1b). In this situation Es
(Figure 1c) seems to fit more naturally into the conception of a

complement than does the usual R (Figure 1d).

In order to avoid this deficiency, the notion of f-complementation

is introduced and is shown to be both intuitively and formally

much more suited as a fuzzy set-theoretical analogon of clLassical

complementation.
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Fig.1c Rg, the f-complement of Fig.1d R, the usual fuzzy
fuzzy set R with respect competement of R (i.e.
to the proper fuzzy set S with respect to the

crisp universe [Ry)

Let me start with explaining the intuitive background for the following
formal considerations: One of the basic and fundamental ideas of f-set
theory is the assumption that the only kind of fuzzy sub-sets are the

so-catled standard subsets ([3]), i.e. that it is not - as is usually

proposed - the <-relLation between ‘membership degrees', which is the
essential characteristic of being a subset; but instead, it is the
property of not being a member in the subset at all or of being a member
"to the same degree"™ as in the underlying (super)set.

I believe to give sufficient support for this with the following
argumentations: Considering the concept of extension and its possible
connections to the notion of a fuzzy set, viz. to fuzzy sets in the
sense of f-set theory (what else a sub-~extension should be than an
extension corresponding to a standard subset): There is, in my

opinion, no doubt that speaking of a subset of A in the classical theory
means to speak about a part of A. Generalizing this situation to the
usual definition of a fuzzy subset, one should be able to answer the fol_
Lowing question: "Which part of fuzzy set A of "reals much greater than
5% (Fig. 2a) corresponds to its fuzzy subset B of those reals, which are
"very much greater than 5" (Figure 2b) ? With the given representation

I feel the answer should be that both sets (as collections) are the same!
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Thus, we have BcA, 1.e B is a proper 'fuzzy subset' of A, but B is not
part of A, which seems to me to be a rather strange result. Of course

B is not a subextension of A either: B is an extension different from A.
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Fig.2a the fuzzy set A of alil Fig.2b the fuzzy set B of
reals "much greater reals "very much
than 5" greater than 5"

2. Basic Formalism

Definition 2.1 Let U={u,, Us, ... ,uUn> be a finite set, called

universe of discourse (universe, basic space, underlLying universe), and

Let V={vg, Vi, -..- , Vmy be a finite partially ordered set, called

vatuation space. The set of alLl mappings from U to V is called the

f-space generated by V and U, and wilLl be denoted by vl. As shorthand

we will also use the term f-space VY.

For sake of mathematical simplicity, as a first approach we will assume
V to be a chain throughout the paper, i.e. 0:=vy<v,y< ... < v =1 1,

ne1l. As usually, we define < as the reflexive version of <, and Llet

A and v denote the meet and join operation in V, respectively. But
assuming ¥ to be a chain, i.e. € to be a total order on V, has
ncn—-mathematical reasons too - and they are the more important ones from
the viewpoint of f-set theory: If we had not made this assumption, there
would exist valuations v,weV which are f-incomparable. Such a
mathematical model would correspond to a situation, where we classify
two objects as being unequal but are unable to say which of them does

exhibit a certain property to a greater extent. This I regard to be



7

unnatural, i.e. not suitably describing everyday Life, because we are

in fact choosing or avoiding.one of the two atLternatives if necessary.

Definition 2.2 An f-set is an element of an f-space VY. Let A and B

denote two f-sets in the f-space VY. A is called f-subset of B,
denoted Am=B, iff A(X)=0 or A(X)=B(x)>0. The empty f-set @ is defined
as follows: VueU: Z(u)=0. (Note that we have used the term "standard

subset™ instead of Y“f-subset"™ up to now.)

For sake of notational convenience Let us assume the basic space U
as being arranged in an arbitrary, but fixed order. Thus, instead of
of the tedious and Longer {<x,;,Va(Xi)>, ... ,<Xpn,Val{Xnp)>)y we simply
will write v,;Vas...v, to specify an f-set A over a universe U, where
Ul =n and v;:=va4(x;). Obviously the vatuation over U with respect to
A is equatly well characterized by each of the two ways of notation.

This will presentlLy become clear from the following

Example 1: We Let U={u,,u,)} ,i.e. |JUl=2, and v={0,a,1}, i.e. |V|=3,
with 0<a<il. We then get the following space of f-sets where the Lines
shatl indicate the relation of being an f-subset. Note that Lines

arising from reflexivity or transitivity have not been inserted.

Fig. 3 The f-space VY, generated by U={u,,u.}
and v={0,a,1}, with 0<a<i.



8

Let suppa := {xeUlA(X)>0); equating suppa with {xeU]Pp(x)} is a
remarkable consequence of our operational approach (see also [3]):

There are only the two alternatives for a (physical or mental) object
of being or not being member of an extension (set) &, since we are
grouping things together in a collection, according to whether they have
or have not a certain property ?. That is to say: Only within the

the support suppa things can be ordered with respect to the degree to
which they do exhibit a property ?. In f-set theory the resulLting

order is modeled by the valuation A:U—V.

The following propositions present a summary of the most fundamental
properties of f-set theory. Their proofs dgenerally are straightforward

and therefore ommitted in most cases.

Proposition 3.1 = is an order on VY, i.e. reflexive, transitive and

antisymmetric.

Proof. (a) ¥XeVY: XX by definition 2.2

(b) A=B A Bs=C
— [A(x)=0 v A(x)=B(x)>0] A [B(x)=0 v B(x)=C(x)>0]
— A(x)=0 v A(x)=B(x)=C(x)>0
—> AgC

(c) A=B A BE=A
— [A(x)=0 v A(X)=B(x)>0] A [B(x)=0 v B(x)=A(x)>0]
—> A(X)=B(x)=0 v A(Xx)=B(x)>0
— A=B

Proposition 3.2 Let A,BeVY; we define the f-set C by

C(x) =

A(x) 1if A(x)=B(x)
; then C is the greatest Lower bound of

0 otherwise
A and B, denoted by g.L.b.{A,B}.
Proof. We obviously have CeV'Y and CcA A CeB, i.e. C is a Lower bound

of A and B. If C' is another Lower bound, then C'(x)=0 v C'(x)=A(X)
=R(X)>0; thus C'(x)>0 — C*(x)=C(x), i.e. C'=C.

Definition 3.3 ArmB := g.L.b.{A,B} is called the f-intersection of

A and B.
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temma 3.4 (Monotonicity of m) AsB — AnC & BnC
Note that m is not a restriction of the usual n (pointwise min-operation)
to certain special pairs of f-sets: In example 1 given above we have

e.g. aan la = 0a !

Proposition 3.5 (Associativity of n) (AmB)nC = An(BnC)

CorotLtary 3.6 (VvY,n) is a n-semilattice.

It is clear from the above by induction that any finite collection
#={Ajr12ig¢n Of f-sets in an f-space VY admits a greatest Lower
bound in vY; we then write g.L.b.{Aj}icign=g-L.b.o#t= M= "] A;

1<i<n

Proposition 3.7 Let Uag = {Ujligign be the set of upper bounds

of A and B. Let Upg denote the greatest Lower bound of Uas,
i.e. Upg= r]Ui. Then Upg is the Least upper bound of A and B, and

Py
will be denoted by L.u.b.{A,B}.

Definition 3.8 Let @%Upag={U;i)i¢i<n Pe the set of upper bounds

of A and B; then we define AuB := g.lL.b.Uag, called the f-union

of A and B.

Corollary 3.9 A=B — AnB=A A AuB=8B

We thus obviously get @nX = @ and QuX = X, i.e. @ as usually acts
as 2 zero and one with regard to n and u, respectively. By transitivity

of = it follows that AnB © AuB, if the Latter one exists in VY.



10

Lemma 3.10 Let A,BeVY. If there exists an f-set CeV!Y defimed by (2)

then C = AuB.

C(x) := B(x) if A(x)=0, (1)

{ A(x) if B(x)=0,
ACX) if A =B(x)>0

(Note that 0<KA(X)*B(xX)>0 implies Upg=0')

u is commutative and idempotent, as is easily seen from Lemma 3.10.
Furthermore we see that C equals the usual AuB (pointwise max—-operation)
if it exists in VY according to (1).

Remar k: The foLlowing results only hotd if atlL the involved unions

exist in the f-space under consideration ! (Indicated by the existential
quantifier 3z}

Lemma 3.12 (Monotonicity of u) A=B —> AuC 3=3 BuC, if the

corresponding f-sets are s-comparable.

Proposition 3.12 (AuB)uC 3=3 Au(BuC)

Proposition 3.13 1) An(AuB) 3= Au(AnB)

i
>

2) (AmB)uB =3 (AuUB)IMB

1
b=

Proposition 3.14 1) An(BuC) 3=3 (AmB)u(AnC)

2) Au(BnC) 3=3 (AuB)n(AuC)

Proposition 3.15 An(BuC) 353 (AnB)uC

3. f-complementation

Definition 4.1 AeVY is an f-universe in VY if suppa=U; an f-universe

A in VY is called B-universe and is denoted by Us, if BgA.

Definition 4.2 Let AeVY; BeVY is called f-complement of A with

valuation v, v#0, iff
I g A(x)>0
B(x) = { (2)
v A(x)=0

(For sake of convenience, B sometimes will simply be called v-complLement
of A, and is denoted ,A.)
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Let me give some arguments for the plausibility of this definition:
Interpreting the degree 0 as usual as the sign for denoting the

fact that the corresponding element is not member of a set A under con_
sideration, "the" complement of A in classical set theory (which in fact
is with respect to the universe V) arises by putting together all those
elements of the underlying universe, which are not members of A, into
another set A. From our viewpoint of fuzzy set theory we do not know
anything about an order of the elements within A, and have thus arrived
at the classical notion of a set as an “unordered collection™. The prob_
Lems are due to the very special nature of the valuation space 2: 1 1is
the only valuation different from 0, and hence we of course get A(x)=1
for atl xeA. But if we use a valuation space V with |V|[>2 we have more
possibilities for constant valuations indicating membership in A, viz.

the v,=|v=-{0}] different positive values > 0.

As a conclLusion we must say that in f-set theory something Like "the"
complement of an f-set does not ad hoc exist; thus we have to further
specify what is meant by ‘complement of A', either as we have done in
definition 4.2 or by using a reference set to obtain the ‘complement of

A with respect to B':

Definition 4.3 Let AeB; the f-complement of A with respect to B is the

f-set Az given by

0 A(x)>0
Ag(x) = (3)

B(x) A(x)=0

The distinction of definitions 4.2 and 4.3 is not present in the classical
theory, because the two concepts of complementation coincide due to the

special valuation space 2. They can be unified in f-set theory too
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(they do not collaps!), provided that we make a suitable generalization

of the commonlLy used definition of pseudocomplement [2,4]:

A Lattice L is catled relatively pseudo-comptemented, if for any pair of

elements a,belL there exists b—a := L.u.b.{xeL|bax<a}, called the

pseudocomplement of b retative to a. Each relatively pseudo-comptemented

Lattice has a unit element 1:=a—a, but does not need to have a zero
elLement.

Returning to f-set theory we then have the following situation: Both in
the general many-valued case and in the special two-valued case, we are
working with a chain as valuation Lattice (according to our assumption of
section 2) V := [0,1] = {0=vo<v,< ... <vp=1}, n1l. We can easily get

the following equations for the crisp case, by successively making the

implicit conditions more expticit and precise (lLet a,b,veV):

b—a := L.u.b.{v]bav<a) = sup{veVlbav<a) = sup{0<v<i|bav<a};

turning over with the notation to valuations of f-sets we further get:

By (x) = sup{0Sv<1|B(x)AvS0} = sup{O0SVv<A(Xx)|B(x)Av<0}.

We thus immediately see, that the crucial point is the choice of the
upper bound of the interval for v to vary in. In the classical two-valued
theory, this interval was bounded from above by 1 as the oniLy "positive”
value different from 0, for every xeU. This again is an examplLe for
collapsing: because there simply is no other choice, it seems as if there
would be a global upper bound for v, independent of x. But generalizing
the formalism in the above way by introducing Local or individual upper_
bounds for the interval in which v may assume its value, we immediately
get formatly consistent and plausible results covering all the new

situations arising in f-set theory as a many-valued set theory.
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The unified formatism results from the above considerations as follows:

Rg(x) := A(x)—30 := sup{ve[0,B(x)]|A(X)Av<0O} (4)
dA(X) 1= A(X)g—0 := sup{ve[0,d]|A(x)Av<O} (3)
Note that (5) is of course a special case of (4): 4A(x) = Kdu(x),
where YxeU: du(x)=d.
We now introduce the following notations: V; := V - {0}, and
&L (V,U) 1= {AeVU]A(X)=0 v A(X)=veV,),

€t (V, U)

U vt (v, .
veV,

If U and Y are clLear from the context or do not need to be further
specified (which will usually be the case in this paper) then we will
shortLy write ¢+ and €, respectively. f-sets in %t or

€t will be called v-constant or constant, respectively. A v-constant
f-universe is called v-universe, for veV,, and is denoted by LU,

i.e. ¥xelU: ,UX)=v.

Note that VYveV,: Be,ét ; thus, ,%t may well be denoted by

P, (U) in order to emphasize its analogy to the classical notion of a
power set ?(U) of U. Indeed, 38, := (TV(U),u,n,J“) forms a

Boolean algebra which is isomorphic to 2Y; generally we have

vv,weV,: 8, = 8,2 2Y.

The following propositions present the key results of our new operational

approach to fuzzy set theorvy:

Proposition 4.4 1) A, = @, (Bplg = B
2) Ag = B
3) VYv,weV,: supp ,( A) = suppa

4) A e ot > YuweV,: (( A) = A
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Proof. We show only the validity of 2):

(B(x) -, @) —>g 0

g

A

8]

(x) if B(x)=0

otherwise

{ B(x) if B(x)—>,0=0 iff B(x)>0

0 otherwise iff B(x)=0

Proposition 4.5 1) VveV,: An,A = O

2) YveV,: Au,A is an A-universe.

3) YveV,: AcB —> ,Bg,A

4) vCeVY: AsB — B.ZA(

Proposition 4.8 1) , (AmB) 2 ,Au,B

2) ((AUB) 3= An,B
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