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Since Sugeno [2] introduced the concept of fuzzy measure,
the extension problem ;f non additive measure has been considered
and a lot of interisting results on it have been given in some
papers. Wang [4] gave an extension theorem for a class of fuzzy
measures, called quasi-measure, and therefore, as a special case,
‘solved the extension problem of Sugeno's g,-fuzzy measures from
a semiQring onto a G-ring. Wang [5],[6] and [7] discussed the
extensions of possibility measures and consonant belief functions
from an arbitrary class of subsets of a nonempty set X onto the
power set jD(X). Song [2]) investigated the extension problem for
"a class of fuzzy measures which is more general then that one in
[(4]. In this paper, we introduce a concept of absolute conti-
nuity of nonnegative set functions, and give a necessary and
sufficient condition for extending a fuzzy measure from an
algebra onto a G-algebra.

Let X be a nonempty set, let &, 4 and ¥ be nonempty classes
of subsets of X, and A ve an:algebra,.$'be a §-algebra contain-
ing &4 . We denote ¢ = {B|3{As} €, such that A./B}.

Definition 1. A set function .u: & —> [0,o0) is called fuzzy

measure on & , if it satisfies the following conditions:
(1) u(p) = 0, when the empty set ¢ € &;
(2) Monotonicity, i.e., VAc &, vBeb& , AcB =3 u(A) £ u(B);

(3) Continuity from below, i.e., YV An€¢ &, n=1,2,":+, vAe &,
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Ao 2A => y(A) = 1im w(A,);

N300
(4) Continuity from above, i.e., Vv A,€ & , n=1,2,-+, vae &,

-

And a set function satisfying the conditions (1)—(3) is called
lower semi-continuous fuzzy measure, or LSC-fuzzy measure for
short.

Definition 2. A nondecreasing set function « : & — [0,00) is

called to be lower (resp. upper) consistent on & , if V B¢ &,

vAnGC’ n=1,2"."

AnZ? U 4,0B = lim wu(dn) = u(B)

(resp. Any N A,CB => lim aw(Ap) ¢ A (B) ).
n={ n >0

Lemma 1. Let M4 : & — [0,>) be a nondecreasing set function. Lf

& is closed under the formation of finite intersection (resp.
_finite'union), then, for w« on &, the lower (resp. upper) con-
sistency is equavalent to the continuity from below (resp. from
above).

Proof. Suppose 4 is continuous from below on & , v B¢ & ’
VA €&, n=1,2,-, if Ay 7 U A.DB, then AnN B _* B. By using
the monotonicity and the continuity from below of &4 , we have

Jim a(An) > lim M(AnNB) = w(B),
that is, M is lower consistent. The converse implication rela-
tion is obvious.
The proof for upper consistency is similar. |
Theorem 1. If u is a LSC-fuzzy measure on # , then .u may be

extended to a LSC-fuzzy measure on 4 uniquely.

Proof., V B€ ., define u*(B) = lim L (A,) when A, #B and

N>
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{An} ¢ 4. This definition is unambiguous. In fact, if there exist
_two sequences {A,} and {A.} in X , such that both A, /B and A} 7B,
then, for any positive integer n,, A, ”BDA) , and by using

Lemma 1, we have

1im aw(A,) @ A4(AL ),

n 500
therefore,

lim u(A,) 2 }ig)AA(AA).

n-—-»ov
The converse inequality holds too. Consequently,

1im u(A,) = }iQ’AA(AL).

We turn to prove the monotonicity of .u* on s« now. Suppose
Ae s, Be A;, and ACB. Then, there exist {An} < 4 and {BsjC
A , such that A,_7A and B,_”B. For any positive integer n,,
since B, B2 A DA, , we have

;‘l__];lgj A (Bp) 2 M(An,)v

and therefore
4*(B) = lim 44(Bn) = lim i (An) = 4 *(A).

The continuity from below of u* may be proved as follows.
Suppose {Anln=0,1,2,---} < 4¢, and A, _7A,. By the construction of
Az, for every n=0,1,2,-++, 3 {Ali=1,2, -} c «, such that A,/ A,.
By the zig-zag diagonal method, write B,= A,, B,= A,, By= 4A,,

By= Ay, Bs= Ay, Be= Ay, By= Ay, -+, and denote Bj = iL:)iBi, then

B!, /’iz An= A,, and therefore,

at*(h,) = lim w(Bh).
Observing the fact that, for any positive integer n,, 3 J = j(n,)
such that B).<A;, we have, by the monotonicity of u*,

A(BY) = ux(Bh) & wmx(A;).

Consequently,
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Ax(A,) £ 1lim aa*(A;).
I P
| The converse inequality is assured by the monotonicity of _u*.
M* is an extension of ., because they coincide on A .,

The uniqueness of extension is obvious. |

Definition 3. Let .« and v be two fuzzy measures on & . we say

that .u is absolutely continuous with respect to YV , in symbols
M« Yy, if VE>0, 3§ >0, such that M (F)- u(E)< € , whenever
Ee&, Fe &, ECF and V(F) - V(E)< .

The concept of absolute: continuity given in the above
definition is a generalization of that one in the classical
measure theory (cf. [1]).

Theorem 2. Let . be a fuzzy measure on « . . can be extended
onto As, if and only if there exists a fuzzy measure » on ¢

such that 4 << Y on « . The extension is unique and it preserves
the absolute continuify with respect to V.

Proof. ©Since <&M for any fuzzy measure .« on ¥, the nece-

" 88ity of the condition in this theorem is evident.

For the sufficiency, we need prove only the continuity from
above of .u* given in the proof of Theorem 1. Suppose {An}CZJ¢¢
and A,YA.¢ o, . Take set sequences {An;|i=1,2, -} C .4, which
satisfy Ani * An, for every n=0,1,2,---. Since A, € A,, Y n=1,2,---,
we may assume that A,; € A, , Vi,n=1,2,---, without any loss of
generality. As MKV on 4 , for any €& >0, there exists J>O,
such that ML(F) < u(E) +—2€ whenever B¢ 4, Fe 4, ECF and
V(F) <« V(E) +§. By using the continuity of J and the defini-
tion of u4* on Ay, there exist N and N', such that

V(A< V(A,) + -25- ’
V(h) < V(hew) + £

)
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M (Ay) < M(Aw) + 5.
Thus, we have

V(Aw) € V(AY) € V(Aw) +6,
and therefore,

M(Aww) < M(Kow) + §
Consequently,

AU*(AL) € M(Aon) + € ¢ ux(A,) + €.

Observing the monotonicity of A%, we obtain

lim uu*(An) = Mu*(4A,).
n »oe

Using an analogous method, it is easy to prove u* <« J on .

The uniqueness of the extension has been shown in Theorem 1.1

To extend a fuzzy measure from an algebra onto a G-algebra
containing it, we need to introduce a new concept of #;-approa-
chability of a fuzzy measure on a G-algebra.

Definition 4. A fuzzy measure 4 on # is called tc be ¢-

approachable, if VAe F# , V >0, 3 Be A, such that BoA and
M(B) € u4u(A) + €,

As a main result in this paper, we give the following exten-
sion theorem.
Theorem 3. A fuzzy measure .u on « may be extended to an A~
approachable fuzzy measure on ¥ , if and only if there exists an
As -approachable fuzzy measure » on #, such that U<« 2 on A.
The extension is unique and it preserves the absolutely continui-
'ty with respect to V.
Proof. The necessity is evident.

For the sufficiency, Theorem 2 tellSus that u may be

extended to a fuzzy measure u* on 4; uniquely, and M*<« ) on



39

’)4‘,. If we define, V A € F,
wu**(A) = inf{u*(B)|ac B e A},

then 4** is nondecreasing, and it coincides with u* on A¢.
Observing that V is Ay -approachable, and using an analogous
method given in Theorem 2, we can prove that M** is continuous
on # , and therefore, it is a fuzzy measure on # . Obviously,
Mm*% ig A -approachable, and it is the unique extension with
A{¢ -approachability.

We can also prove the absolutely continuity of‘AA** with
respect to V in a similar means. |

Since a classical measure on 6( ), the G-algebra generated
by 4 , is H¢-approachable (cf. [1]), we have the following
corollary.

Corollary 1. A fuzzy measure .« on 4 may be extended onto ¢( )

uniquely, if there exists a finite measure » on «, such that

MKLY on 4.
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