ABSOLUTE CONTINUITY AND EXTENSION OF FUZZY MEASURES

WANG Zhenyuan

Department of Mathematics, Hebei University, Baoding, Hebei, China

Since Sugeno [2] introduced the concept of fuzzy measure, the extension problem of non additive measure has been considered and a lot of interisting results on it have been given in some papers. Wang [4] gave an extension theorem for a class of fuzzy measures, called quasi-measure, and therefore, as a special case, solved the extension problem of Sugeno's g_{λ} -fuzzy measures from a semi-ring onto a σ -ring. Wang [5],[6] and [7] discussed the extensions of possibility measures and consonant belief functions from an arbitrary class of subsets of a nonempty set X onto the power set $\mathcal{P}(X)$. Song [2] investigated the extension problem for a class of fuzzy measures which is more general then that one in [4]. In this paper, we introduce a concept of absolute continuity of nonnegative set functions, and give a necessary and sufficient condition for extending a fuzzy measure from an algebra onto a σ -algebra.

Let X be a nonempty set, let \mathcal{E} , \mathcal{A} and \mathcal{F} be nonempty classes of subsets of X, and \mathcal{A} be an algebra, \mathcal{F} be a \mathcal{F} -algebra containing \mathcal{A} . We denote $\mathcal{A}_{\mathcal{F}} = \{B \mid \exists \{A_n\} \subset \mathcal{A} \text{, such that } A_n \nearrow B\}$.

Definition 1. A set function $\mathcal{M}: \mathcal{E} \longrightarrow [0,\infty)$ is called fuzzy measure on \mathcal{E} , if it satisfies the following conditions:

- (1) $u(\phi) = 0$, when the empty set $\phi \in \mathcal{E}$;
- (2) Monotonicity, i.e., $\forall A \in \mathcal{E}$, $\forall B \in \mathcal{E}$, $A \subset B \implies \mathcal{U}(A) \leq \mathcal{U}(B)$;
- (3) Continuity from below, i.e., $\forall A_n \in \mathcal{E}$, $n=1,2,\cdots$, $\forall A \in \mathcal{E}$,

(4) Continuity from above, i.e., $\forall A_n \in \mathcal{E}$, $n=1,2,\dots$, $\forall A \in \mathcal{E}$, $A_n \neq A \implies \mathcal{M}(A) = \lim_{n \to \infty} \mathcal{M}(A_n)$.

And a set function satisfying the conditions (1)—(3) is called lower semi-continuous fuzzy measure, or LSC-fuzzy measure for short.

<u>Definition 2.</u> A nondecreasing set function $\mu: \mathcal{E} \to [0, \infty)$ is called to be lower (resp. upper) consistent on \mathcal{E} , if $\forall B \in \mathcal{E}$, $\forall A_n \in \mathcal{E}$, $n=1,2,\cdots$,

$$A_n \mathcal{I} \bigcup_{n=1}^{\infty} A_n \supset B \Longrightarrow \lim_{n \to \infty} \mathcal{U}(A_n) \cong \mathcal{U}(B)$$

(resp.
$$A_n \supset \bigcap_{n=1}^{\infty} A_n \subset B \implies \lim_{n \to \infty} \mathcal{M}(A_n) \subseteq \mathcal{M}(B)$$
).

Lemma 1. Let $\mathcal{U}: \mathcal{E} \to [0, \infty)$ be a nondecreasing set function. If \mathcal{E} is closed under the formation of finite intersection (resp. finite union), then, for \mathcal{U} on \mathcal{E} , the lower (resp. upper) consistency is equavalent to the continuity from below (resp. from above).

Proof. Suppose \mathcal{M} is continuous from below on \mathcal{E} . \forall B \in \mathcal{E} , \forall A_n \in \mathcal{E} , n=1,2,..., if A_n \mathcal{I} $\overset{\circ}{\mathcal{U}}$ A_n \supset B, then A_n \cap B \mathcal{I} B. By using the monotonicity and the continuity from below of \mathcal{M} , we have $\lim_{n\to\infty} \mathcal{M}(A_n) \cong \lim_{n\to\infty} \mathcal{M}(A_n \cap B) = \mathcal{M}(B),$

that is, $\mathcal M$ is lower consistent. The converse implication relation is obvious.

The proof for upper consistency is similar. In the proof for upper cons

Proof. $\forall B \in \mathcal{A}_{\sigma}$, define $\mathcal{M}^*(B) = \lim_{n \to \infty} \mathcal{M}(A_n)$ when $A_n \neq B$ and

 $\{A_n\}\subset \mathcal{A}$. This definition is unambiguous. In fact, if there exist two sequences $\{A_n\}$ and $\{A_n'\}$ in \mathcal{A} , such that both $A_n\mathcal{I}B$ and $A_n'\mathcal{I}B$, then, for any positive integer n_o , $A_n\mathcal{I}B\supset A_{n_o}'$, and by using Lemma 1, we have

$$\lim_{n\to\infty} \mathcal{L}(A_n) \geq \mathcal{L}(A_{n_o}),$$

therefore.

$$\lim_{n\to\infty} \mathcal{M}(A_n) \ge \lim_{n\to\infty} \mathcal{M}(A_n').$$

The converse inequality holds too. Consequently,

$$\lim_{n\to\infty} \mathcal{M}(A_n) = \lim_{n\to\infty} \mathcal{M}(A_n').$$

We turn to prove the monotonicity of \mathcal{M}^* on \mathcal{A}_{σ} now. Suppose $A \in \mathcal{A}_{\sigma}$, $B \in \mathcal{A}_{\sigma}$, and $A \subset B$. Then, there exist $\{A_n\} \subset \mathcal{A}$ and $\{B_n\} \subset \mathcal{A}$, such that $A_n \nearrow A$ and $B_n \nearrow B$. For any positive integer n., since $B_n \nearrow B \supset A \supset A_{n_{\bullet}}$, we have

$$\lim_{n\to\infty}\mathcal{M}(B_n) \, \cong \, \mathcal{M}(A_{n_0}),$$

and therefore

$$\mathcal{U}^*(B) = \lim_{n \to \infty} \mathcal{U}(B_n) \ge \lim_{n \to \infty} \mathcal{U}(A_n) = \mathcal{U}^*(A).$$

The continuity from below of \mathcal{M}^* may be proved as follows. Suppose $\{A_n \mid n=0,1,2,\cdots\} \subset \mathcal{A}_{\mathfrak{C}}$, and $A_n \nearrow A_n$. By the construction of $\mathcal{A}_{\mathfrak{C}}$, for every $n=0,1,2,\cdots$, $\exists \{A_{ni} \mid i=1,2,\cdots\} \subset \mathcal{A}_{\mathfrak{C}}$, such that $A_{ni} \nearrow A_n$. By the zig-zag diagonal method, write $B_i = A_{ii}$, $B_2 = A_{i2}$, $B_3 = A_{2i}$, $B_4 = A_{i3}$, $B_5 = A_{22}$, $B_6 = A_{31}$, $B_7 = A_{i4}$, \cdots , and denote $B_n^* = \bigcup_{i=1}^n B_i$, then $B_n^* \nearrow \bigcup_{i=1}^{\infty} A_n = A_n$, and therefore,

$$\mathcal{U}^*(A_0) = \lim_{n \to \infty} \mathcal{U}(B_n^*).$$

Observing the fact that, for any positive integer n_o , $\exists j = j(n_o)$ such that $B_{n_o}^* \subset A_j$, we have, by the monotonicity of \mathcal{M}^* ,

$$\mathcal{L}(B_{n_0}^{\dagger}) = \mathcal{L}^*(B_{n_0}^{\dagger}) \leq \mathcal{L}^*(A_{j_0}^{\dagger}).$$

Consequently,

$$u*(A_{\bullet}) \leq \lim_{i \to \infty} u*(A_i).$$

The converse inequality is assured by the monotonicity of u^* .

 μ * is an extension of μ , because they coincide on A.

The uniqueness of extension is obvious.

Definition 3. Let \mathcal{M} and \mathcal{V} be two fuzzy measures on \mathcal{E} . We say that \mathcal{M} is absolutely continuous with respect to \mathcal{V} , in symbols $\mathcal{M} \ll \mathcal{V}$, if $\forall \mathcal{E} > 0$, $\exists \mathcal{E} > 0$, such that $\mathcal{M}(F) - \mathcal{M}(E) < \mathcal{E}$, whenever $E \in \mathcal{E}$, $F \in \mathcal{E}$, $E \subset F$ and $\mathcal{V}(F) - \mathcal{V}(E) < \mathcal{E}$.

The concept of absolute continuity given in the above definition is a generalization of that one in the classical measure theory (cf. [1]).

Theorem 2. Let \mathcal{M} be a fuzzy measure on \mathcal{A} . \mathcal{M} can be extended onto \mathcal{A}_{ς} , if and only if there exists a fuzzy measure \mathcal{V} on \mathcal{A}_{ς} such that $\mathcal{M} \ll \mathcal{V}$ on \mathcal{A} . The extension is unique and it preserves the absolute — continuity with respect to \mathcal{V} .

Proof. Since $\mathcal{M} \ll \mathcal{M}$ for any fuzzy measure \mathcal{M} on \mathcal{A} , the necessity of the condition in this theorem is evident.

For the sufficiency, we need prove only the continuity from above of \mathcal{M}^* given in the proof of Theorem 1. Suppose $\{A_n\} \subset \mathcal{A}_{\varsigma}$ and $A_n \vee A_{\iota} \in \mathcal{A}_{\varsigma}$. Take set sequences $\{A_{ni} \mid i=1,2,\cdots\} \subset \mathcal{A}_{\iota}$, which satisfy $A_{ni} \nearrow A_n$, for every $n=0,1,2,\cdots$. Since $A_{\iota} \subset A_{n}$, $\forall n=1,2,\cdots$, we may assume that $A_{\iota i} \subset A_{ni}$, $\forall i,n=1,2,\cdots$, without any loss of generality. As $\mathcal{M} \ll \mathcal{V}$ on \mathcal{A}_{ι} , for any $\mathcal{E} > 0$, there exists $\mathcal{E} > 0$, such that $\mathcal{M}(F) < \mathcal{M}(E) + \frac{\mathcal{E}}{2}$ whenever $E \in \mathcal{A}_{\iota}$, $F \in \mathcal{A}_{\iota}$, $E \subset F$ and $\mathcal{V}(F) < \mathcal{V}(E) + \mathcal{E}_{\iota}$. By using the continuity of \mathcal{V} and the definition of \mathcal{M}^* on \mathcal{A}_{ς} , there exist N and N', such that

$$\mathcal{V}(A_{N}) < \mathcal{V}(A_{o}) + \frac{\delta}{2},$$

$$\mathcal{V}(A_{o}) < \mathcal{V}(A_{oN'}) + \frac{\delta}{2}$$

and

$$\mathcal{U}^*(A_N) < \mathcal{U}(A_{NN'}) + \frac{\mathcal{E}}{2}$$
.

Thus, we have

$$\nu(A_{NN'}) \leq \nu(A_N) < \nu(A_{NN'}) + \delta$$

and therefore.

$$\mathcal{M}(A_{NN'}) < \mathcal{M}(A_{ON'}) + \frac{\mathcal{E}}{2}$$
.

Consequently.

$$\mathcal{U}^*(A_N) < \mathcal{U}(A_{oN'}) + \mathcal{E} \leq \mathcal{U}^*(A_o) + \mathcal{E}$$
.

Observing the monotonicity of \mathcal{M}^* , we obtain

$$\lim_{n\to\infty}\mathcal{M}^*(A_n)=\mathcal{M}^*(A_o).$$

Using an analogous method, it is easy to prove $u* \ll v$ on A_{c} . The uniqueness of the extension has been shown in Theorem 1.

To extend a fuzzy measure from an algebra onto a G-algebra containing it, we need to introduce a new concept of \mathcal{A}_G -approachability of a fuzzy measure on a G-algebra.

<u>Definition 4.</u> A fuzzy measure \mathcal{L} on \mathcal{F} is called to be \mathcal{A}_{σ} -approachable, if $\forall A \in \mathcal{F}$, $\forall \mathcal{E} > 0$, $\exists B \in \mathcal{A}_{\sigma}$, such that B > A and $\mathcal{L}(B) \subseteq \mathcal{L}(A) + \mathcal{E}$.

As a main result in this paper, we give the following extension theorem.

Theorem 3. A fuzzy measure $\mathcal M$ on $\mathcal A$ may be extended to an $\mathcal A_{\sigma}$ -approachable fuzzy measure on $\mathcal F$, if and only if there exists an $\mathcal A_{\sigma}$ -approachable fuzzy measure $\mathcal V$ on $\mathcal F$, such that $\mathcal M \ll \mathcal V$ on $\mathcal A$. The extension is unique and it preserves the absolutely continuity with respect to $\mathcal V$.

Proof. The necessity is evident.

For the sufficiency, Theorem 2 tells us that $\mathcal M$ may be extended to a fuzzy measure $\mathcal M^*$ on $\mathcal A_{\varsigma}$ uniquely, and $\mathcal M^*\ll \mathcal V$ on

 \mathcal{A}_{σ} . If we define, $\forall A \in \mathcal{F}$,

$$\mathcal{U}^{**}(A) = \inf \{ \mathcal{U}^{*}(B) | A \subset B \in \mathcal{A}_{\sigma} \},$$

then \mathcal{M}^{**} is nondecreasing, and it coincides with \mathcal{M}^{*} on $\mathcal{A}_{\mathfrak{C}}$. Observing that \mathcal{V} is $\mathcal{A}_{\mathfrak{C}}$ -approachable, and using an analogous method given in Theorem 2, we can prove that \mathcal{M}^{**} is continuous on \mathcal{F} , and therefore, it is a fuzzy measure on \mathcal{F} . Obviously, \mathcal{M}^{**} is $\mathcal{A}_{\mathfrak{C}}$ -approachable, and it is the unique extension with $\mathcal{A}_{\mathfrak{C}}$ -approachability.

We can also prove the absolutely continuity of \mathcal{M}^{**} with respect to $\mathcal V$ in a similar means.

Since a classical measure on $\sigma(\mathcal{A})$, the σ -algebra generated by \mathcal{A} , is \mathcal{A}_{σ} -approachable (cf. [1]), we have the following corollary.

Corollary 1. A fuzzy measure $\mathcal U$ on $\mathcal A$ may be extended onto $\mathcal C(\mathcal A)$ uniquely, if there exists a finite measure $\mathcal V$ on $\mathcal A$, such that $\mathcal U \ll \mathcal V$ on $\mathcal A$.

References

- [1] P. R. Halmos, Measure Theory, Van Nostrand, New York, 1967.
- [2] Song Renming, The extensions of a class of fuzzy measures, Journal of Hebei University 2(1984), 97-101(in Chinese).
- [3] M. Sugeno, Theory of fuzzy integrals and its applications, Ph. D. dissertation, Tokyo Institute of Technology, 1974.
- [4] Wang Zhenyuan, Une classe de mesures floues les quasimesures, BUSEFAL 6(1981), 28-37.
- [5] Wang Zhenyuan, On the extension of possibility measures, BUSEFAL 18(1984), 26-32.
- [6] Wang Zhenyuan, Extension of consonant belief functions defined on an arbitrary nonempty class of sets, Publication

- 54 de la Groupe de Recherche Claude François Picard, C.N.R.S. France (1985), 61-65.
- [7] Wang Zhenyuan, Semi-lattice structure of all extensions of possibility measure and consonant belief function, in "Fuzzy Mathematics in Earthquake Researchs" (Feng Deyi, Liu Xihui eds.), Seismological Press, Beijing (1985), 332-336.