A NOTE ON FIXED POINTS FOR FUZZY MAPPINGS

Li Bingyou

Department of Mathematics,

Hebei Teacher's University,

Shijiazhuang, People's Republic of China

ABSTRACT

This paper presents a new fixed point theorem for fuzzy mapping. The result given in this paper improve and perfected a result of Butnariu in [1].

I. INTRODUCTION AND PERLIMINARIES

Fixed point theorems for fuzzy mappings have been considered by Butnariu and the author in [1-3]. The purpose of this paper is to study this problem further. The reslts given in this paper improve and perfected a result of Butnariu in [1].

Let X be a nonempty set. Denote by $\mathcal{F}(X)$ the set of all fuzzy sets on X. If $F\colon X\to \mathcal{F}(X)$ is a fuzzy mapping, then F(X) (denoted by F_X) is a Fuzzy set on X for each $x\in X$. But $F_X(y)$ denotes subordinate degree of $y\in X$ belongs to fuzzy set F_X . Hence, Fuzzy mapping F on X expressible as a fuzzy set on $X\times X$, i.e. it is defined by the real valued function $F(x,y)=F_X(y)$ from $X\times X$ into $\{0,1\}$.

Let $F: X \to \mathcal{F}(X)$ be a fuzzy mapping. If $\{y \in X: F_{\mathbf{X}}(y) = \max_{\mathbf{u} \in X} F_{\mathbf{X}}(\mathbf{u})\}$

is a nonempty set, then we can define a set-valued mapping $F: X \longrightarrow 2^X$ as follows:

$$\hat{F}(x) = \left\{ y \in X : F_{\mathbf{X}}(y) = \max_{\mathbf{u} \in X} F_{\mathbf{x}}(\mathbf{u}) \right\},$$

and \hat{F} is called a set-valued mapping induced by the fuzzy mapping F.

 $x^* \in X$ is called a fixed point of a fuzzy mapping $F: X \longrightarrow \mathcal{F}(X)$, if

$$F_{X*}(x*) \geqslant F_{X*}(x) \quad \forall x \in X.$$

From the definition we can immediately obtain the following result.

Lemma (3). $x^* \in X$ is a fixed point of a fuzzy mapping F, if and only if x^* is a fixed point of the set-valued mapping $F: X \rightarrow 2^X$, i.e. $x^* \in F(x^*)$.

Definition I. Real valued function $f: X \longrightarrow \mathbb{R}$ on topological space is called a upper (lower) semi-continuous if

$$\left\{x \in X: f(x) < r\right\} \left(\left\{x \in X: f(x) > r\right\}\right)$$

is open set in X for each r (R.

Definition 2 (1). Let X be a real vector topological space. Fuzzy mapping $F: X \longrightarrow \mathcal{F}(X)$ on X is called closed, if real valued function $F(x,y) = F_{\mathbf{X}}(y)$ is upper semi-continuous on $X \times X$. F is called convex, if for each $x \in X$, $F_{\mathbf{X}} \in \mathcal{F}(X)$ is a convex fuzzy set on X, i.e. for any $y,Z \in X$, $t \in \{0,1\}$ we have inequality

$$F_X(ty+(1-t)z) \geqslant \min \{F_X(y), F_X(z)\}.$$

II MAIN RESULTS

Theorem 1 (kakutani-ky Fan) (4). Let X be a locally convex Hausdorff real vector topological space. C is a nonempty compace convex subset of X. Suppose that T: $C \longrightarrow 2C$ is a

Kakutani set-valued mapping, i.e. T satisfy the following conditions:

- (i) For any x & C, Tx is a nonempty compact convex set.
- (ii) The graph of T:

$$G(T) = \{(x,y): y \in Tx\}$$

is closed in $X \times X$.

Then T has a fixed point x^* in C, i.e., $x^* \in Tx^*$.

The following theorem was proved in (1).

Theorem 2. (see theorem 2.4 in (1)). Let X be a locally convex Hausdorff real vector topological space. C is a nonempty compact convex subset of X. If F is a convex and closed fuzzy mapping on C.

Then T has a fixed point in C.

In (1) there is no explicit mention of the condition $\inf \left\{ F(x,y) : (x,y) \in G(\tilde{F}) \right\} > 0.$

However, as the next example shows, this assumption can't be omitted.

EXAMPLE. Let X = R and $C = \{0,1\}$. Define $F: C \rightarrow \mathcal{F}(C)$ as follows:

$$F(x,y) = \begin{cases} \frac{1}{2}y, & 0 \le x < 1, & 0 \le y \le 1, \\ 1 - \frac{1}{2}y, & x = 1, & 0 \le y \le 1. \end{cases}$$

That is, $F_X(y) = \frac{1}{2}y$, for $0 \le x < 1$ and $F_X(y) = 1 - \frac{1}{2}y$ for x = 1.

From this, it is easy to prove F_X is a convex Fuzzy set on C for any $x \in C$. Hence, F is convex.

Now we prove that F(x,y) is a upper semi-continuous funtion on $C \times C$. By theorem 1, we can prove that for any $r \in (0,1)$

$$\left\{ (x,y) : F(xy) < r \right\}$$

is open set in C × C.

In fact, we have

$$\left\{ (x,y) : F(x,y) < r \right\} = \begin{cases} \phi, & \text{for } r=0, \\ \left\{ (x,y) : x=0, 0 < y < 2r \right\} \\ \left\{ (x,y) : 0 < x < 1, 0 < y < 2r \right\} \\ \left\{ (x,y) : x=1, 2(1-r) < y < 1 \right\} & \text{for } \frac{1}{2} < r < 1. \end{cases}$$

Obviously, $\{(x,y): F(x,y) < r\}$ is open set for any $r \in (0,1)$. Hence, fuzzy mapping F is closed.

However, from definition of F(x,y) we know that

$$\hat{F}_{\mathbf{x}} = \begin{cases} \{1\} & , & 0 \leq \mathbf{x} < 1 \\ \{0\} & , & \mathbf{x} = 1 \end{cases}$$

Hence, it is easy to see that F does not have a fixed point. So F(x,y) does not have a fixed point.

Observe that $\inf \{ F(x,y) : (x,y) \in G(F) \} > 0 \text{ is not true}$ in this case.

Theorem 3 (Fuzzy generalization of Kakutanky Fan theorem) Let X be a locally convex Hausdorff real vector topological space. C is a nonempty compact convex subset of X. Suppose that F is a fuzzy mapping on C satisfy the following conditions:

- (i) For each $x \in C$, F_x is a nonempty set.
- (ii) \widehat{F} is a convex and closed fuzzy mapping on C.

(iii) inf
$$\{F(x,y): (x,y) \in G(\widehat{F})\} > 0$$
.

Then T has a fixed point in C. Where
$$\widehat{F}(x,y) = \begin{cases} F(x,y), & x \in \widehat{F}_x \\ 0, & x \in \widehat{F}_x \end{cases}$$
.

Obviously, we have

$$F(x,y) \geqslant \widetilde{F}(x,y)$$
 and $\widetilde{F} = \widehat{\widetilde{F}}$.

Hence, \widetilde{F} and F have a same fixed point.

Proof. From Lemma we have only to prove the \widehat{F} have a fixed point in C. It is easily verified that \widehat{F} satisfy the conditions of theorem 1.

1. For any x,y, z \in C, t \in (0,1), if y, z \in \widehat{F}_X , then $\widetilde{F}(x,y) = F(x,y)$, $\widetilde{F}(x,z) = F(x,z)$.

From \widetilde{F} is convex and definition of $\widehat{F}_{\mathbf{X}}$, we obtain $\widetilde{F}_{\mathbf{X}}(\mathsf{t} \mathsf{y} + (1-\mathsf{t})\mathsf{Z}) \geqslant \min \left\{ \widetilde{F}_{\mathbf{X}}(\mathsf{y}), \widetilde{F}_{\mathbf{X}}(\mathsf{Z}) \right\} = \min \left\{ F_{\mathbf{X}}(\mathsf{y}), F_{\mathbf{X}}(\mathsf{Z}) \right\} = \max F_{\mathbf{X}}(\mathsf{u}).$

So $ty + (1-t)Z \in \hat{F}_{x}$, i.e. \hat{F}_{x} is convex.

2. Suppose that $\{y_{\chi}: \chi \in \mathcal{T}\}$ is any net in F_X and its limit is y_0 . Then for each $y \in C$ and $\chi \in \mathcal{T}$, we have

$$F(x,y_{\alpha}) \geqslant F(x,y).$$

since $y_x \in \widehat{F}_X$, hence $\widetilde{F}(x,y_x) = F(x,y_x)$. From $\{(x,y_x): x \in \widehat{f}\}$ converges to (x,y_x) and upper semi-continuity of $\widetilde{F}(x,y)$, we obtain

$$\begin{split} F(x,y_{\circ}) \geqslant & \widetilde{F}(x,y_{\circ}) \geqslant \lim_{\alpha \in \mathcal{I}} \text{ sum } \widetilde{F}(x,y_{\alpha}) \\ &= \lim_{\alpha \in \mathcal{I}} \text{ sum } F(x,y_{\alpha}) \geqslant F(x,y). \end{split}$$

Hence, $y_{o} \leftarrow \hat{F}_{X}$, i.e. \hat{F}_{X} is closed set in C.

From C is compact, we have $\hat{F}_{X}{\subset}$ C. This implies that \hat{F}_{X} is compact.

3. Let r= inf
$$\{F(x,y): (x,y) \in G(\widehat{F})\} > 0$$
, then $G(\widehat{F}) = \{(x,y): \widehat{F}(x,y) \geqslant r\}$.

Since $\widetilde{F}(x,y)$ is upper semi-continuous, hence

$$G(\widehat{F}) = \{(x,y) \colon \widetilde{F}(x,y) \geqslant r\} \text{ is closed set in } X \times X. \text{ By theorem}$$

1, \widehat{F} has a fixed point in C. This completes the prove of theorem 3.

Remark. Let $T: C \longrightarrow 2^{C}$ be set-valued mapping satisfy the all conditions of theorem 1. then we may define a fuzzy mapping $F: C \longrightarrow \mathcal{F}(c)$ as follows:

$$F : x \longrightarrow F_x = \mathcal{X}_{Tx} \quad \forall x \in C.$$

with \mathcal{X}_{Tx} is a charactevistic function of set Tx. It is easily verified that F satisfy the all conditions of theorem 3. Hence, theorem 3 is fuzzy generalization of Kakutaniky Fan theorem.

REFERENCES

- (1). D Butnariu, "Fixed point for fuzzy mappings", Fuzzy sets and systems, 7 (1982) 191—207.
- (2). S. Helpern, "Fuzzy mappings and fixed point theorem", J. Math. Aual. Appl. 83 (1981), 566-569.
- (3). Chang Shin-sen, "Fixed point theorems for fuzzy mappings", Fuzzy sets and systems 17 (1985) 181-187.
- (4). Ky Fan, "Fixed point and minimax theorem in locally convex topological linear spaces", Proc. Not. Acad. Sci. 38 (1952) 121—126.
- (5). O. Kaleva, "A note on fixed points for fuzzy mappings", Fuzzy sets and systems 15 (1985) 99-100.