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ABSTRACT
This paper presents a new fixed point theorem for fuzzy
mapping. The result given in this paper improve and perfected

a result of Butnariu in [1].

T. INTRODUCTION AND PERLIMINARIES

Fixed point theorems for fuzzy mappings have been
considered by Butnariu and the author in (1—3]. The purpose
of this paper is to study this problem further. The reslts
given in this paper improve and perfected a result of
Butnariu in (1).

Let X be a nonempty set. Denote by‘ERX) the set of all
fuzzy sets on X. If F: = HX) is a fuzzy mapping, then
F(*) (denoted by Fy) is a Fuzzy set on X for each x ¢ X. But
Fx(y) denotes subordinate degree of y¢X belongs to fuzzy set
Fy. Hence, Fuzzy mapping F on X expressible as a fuzzy set
on XxX, i.e. it is defined by the real valued function
F(x,y)=Fx(y) from X XX into (0,13.

Let F: X— 3(X) be a fuzzy mapping. If {yé—X:Fx(y)zmiﬁFx(uz}
u

is a nonempty set, then we can define a set-valued mapping

A
F X——_>2X as follows:
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g(x) ={y€-X: Fy(y) =max Fx(u)} ,
ueX

A
and F is called a set-valued mapping induced by ‘the fuzzy
mapping F.

x*G—X is called a fixed point of a fuzzy mapping
F: X— F(X), if

Fyx(x*) 2 Pxx(x) ¥ xéX.
From the definition we can immediately obtain the following
result.
Lemma [3). x*€X is a fixed point of a fuzzy mapping F,
if and only if x* is a fixed point of the set-valued mapping
F : X—72X, i.e. x*é-g(x*).

Definition I. Real valued function f: X——>R on topological

space 1s called a upper (lower) semi-continuous if
{XEX: f(x)(r} ( {XE’X: f(x)>r} )
is open set in X for each r €&R.

Definition 2 (1). Let X be a real vector topological space.
Fuzzy mapping F: X-—}i}(X) on X is called closed, if real
valued function F(x,y) = Fy(y) is upper semi-continuous on
XXX. F is called convex, if for each x £X )FXG{;(X) is a
convex fuzzy set on X, i.e. for any y,2€ X, té—(0,1) we have

inequalily

Fx(ty+(1—t]z)2 min {Fx(y), FX(Z)}-

IT MAIN RESULTS
Theorem 1 ( kakutani-ky Fan ) (4). Let X be a locally
convex Hausdorff real vector topological space. C is a nonempty

compace convex subset of X. Suppose that T: C—s2C is 2a

N



id

Kakutani set-valued mapping, i.e. T satisfy the foliowing
conditions:

(i) For any x€C, Tx is a nonempty compact convex set.

(ii) The graph of T:

(HT)={(Ly):yETx}
is closed in X x X,

Then T has a fixed point x* in C, i.e., x*¢& Tx*,

The following theorem was proved in (1].

Theorem 2. ( see theorem 2.4 in (1) ). Let X be a locally
convex Hausdorff real vector topological space. C is a
nonempty compact convex subset of X. If F is a convex and
closed fuzzy mapping on C.

Then T has a fixed point in C,.
In (1) there is no explicit mention of the condition
infi}%x,y): (x,y)GG(g)}> 0.
However, as the next example shows, this assumption can't
be omitted.
BXAMPLE. Let X = R and C= (0,1). Define F: C— HC)

as follows:

3y 0<x <1, 0¢<y¢<t,
Flx,y) =
1‘%}’: x =1, OSYS1-
That is, Fy(y) =%y, for 0<x <1 and Fy(y)= 1-%y for x=1.

From this, it is easy to prove Fy is a convex Fuzzy set
on C for any x¢& C. Hence, F is convex.
Now we prove that F(x,y) is a upper semi-continuous
funtion on C XC., By theorem 1, we can prove that for any
r € (o0,1)
%(x,y) : F(Xy)<:r}

is open set in CXC,.

N ]



In fact, we have
(P , for r=0,

{(x,5): x=0,0<ycar)
{(x,y)zF(x,y)<r}= for O<r¢¥,

{(x,y): 0<x<1, O<y<2r}

{(x,y): x=1, 2(1—r)(y<1} for +<r¢t.
Obviously, §(x,y): F(x,y) <r} is open set for any

r€ (0,1]). Hence, fuzzy mapping F is closed.

However, from definition of F(x,y) we know that

A {1} , 0<&x (1
X:

4
{o} , x =1 .

A
Hence, it is easy to see that F does not have a fixed point.

h)

Sc F(x,y) does not have a fixed point.

Observe that inf{-F(x,y) : (x,y)éiG(§)§> O is not true
in this case.

Theorem 3 (Fuzzy generalization of Kakutanky Fan
theorem) Let X be a locally convex Hausdorff real vector
topological space. C is a nonempty compact convex subset of
X. Suppose that I is a fuzzy mapping on C satisfy the
following conditions:

(i) For each x€C, Qx is a nonempty set.

~

(ii) F is a convex and closed fuzzy mapping on C.

(iii) inf §F(x,y) : (x,y)€ G(@)B > 0.

Then T has a fixed point in C.A
Where Ekx,y) = { F(x,y), Xérix ,
o , x € Fy

Obviously, we have
N

A
F(x,y)2 F(x,y) and F =
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o~

Hence, [ and F have a same fixed point.
AN
/
Proof. From lLemma we have only to prove the F have

N
a fixed point in C. It is easily verified that F satisfy

the conditions of theorem 1.

4

A
. For any x,y, z€C, t¢ (0,1}, if y, z¢ Fy, then
F(x,y) = F(x,y), F(x,z) =F(x,z) .

~

From I 1is convex and definition of

oD

x » We obtain

—~

Fx(ty + (1=-t)72) 2 min{lg;(Y) ’ E;(Z)}

= min {Fx(y), FX(Z)> = maxFy(u).

uéce
A A
So ty + (1-t)Z2&Fg, 1i.e. Fy is convex.
N
2. Suvpose that {yk ::xejgis any net in F; and its

limit is yo . Then for each y€¢C and «¢ ] , we have

F(x,y, ) 2F(x,y).

A

since y, ¢ Fx, hence F(x,y, ) = F(x,y, ). From {(x,y« ):x(;j}
converges to (x,Y¥, ) and upper semi-continuity of ?Xx,y), we

obtain

r~ —~

F(x,yb)ziF(x,y,);lim sum F(x,y, )
Ly,

= lim sum F(x,y, ) 2 F(x,y).
X¢7T
N N
Hence, y, € Fx, i.e. Fy is closed set in C.
8

N
From C is compact, we have Fy<C. This implies that F,

is compact.
A
3. Let r= inf {F(X,y): (X,y)E-G(F)} > o,
A ~
then  G(£) ={(x,y) : Flx,y)r]

Jince F(x,v) is upper semi-continuous, hence

N -
GR) = %(x,y): F(x,y)Z,r} is closed set in ¥ X X. By theorem
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N

1,’F has a fixed point in C. This completes the prove of
theorem 3.

Remark. Let T: C—52C be set-valued mapping satisfy
the all conditions of theorem 1. then we may define a fuzzy
mapping F: C—= Fc) as follows:

F: x—3Fy =€bTX Vxel,

with CKTX is a charactevistic function of set Tx. It is easily
verified that F satisfy‘the all conditions of theorem 3.
Hence, theorem 3 is fuzzy generalization of Kakutaniky Fan

theorem.
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