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ABSTRACT

It is pointed out in this paper that any uncertain factor (not only random
factor) in an engineering system will lead to the uncertainty of safety degree
of the system. Thus the concept of reliability should be extended. The relia-
bility taking account of other uncertain factors besides random one may be called
generalized reliability.

At present, people have gradually recognized that in the uncertainties of a
system there often exist fuzziness besides randomness. Starting from the gene-
ral case, this paper presents a method of fuzzy-random reliability analysis of
complex engineering systems with multiple failure modes. For this purpose, the
concepts such as fuzzy response, fuzzy safe criterion, satisfaction degree of
the response to the fuzzy safe criterion and fuzzy safe region of the system are
defined. As the special cases of fuzzy-random reliability, "random reliability”
and "fuzzy reliability” are obtained respectively under conditions that in the
system there exists onty randomness or only fuzziness. The former is the relia-
bility defined in the current reliability theory.

Key Words, engineering system, generalized reliability, fuzzy-random safe
region, fuzzy-random reliability,

1. INTRODUCTION

Engineering systems are generally subjected to some external excitations
and have some responses. In order to judge whether a system works normally,
some limits are often set to its responses. The relative retationship of any
response and its limit forms one of constraints of the safe criterion of the
system,

The uncertainty of systems which has been cosidered in the current reliabi-
lity theory is only randomness. In this case, the reliability of a system is
naturally defined as the probability for the system to work normally in certain
service life "T” under some conditions. At present, people have gradually
recognized that a system itself and its external excitations may have not only
randomness but also fuzziness. In addition, the allowable intervals of the
responses should not be determined by distinct boundaries, i.e. the limits on
responses should be fuzzy, or there should be an intermediary transition between
absolute permission and absolute impermission for any one response''’. This
kind of uncertainty leads to the fuzziness of the safe criterion. In our pre-
vious papers [1-4], we have discussed how to take account of the fuzziness of
both the earthquake excitation and the allowable intervals of the responses in
optimum design and reliability analysis for aseismic structures.

This paper will start from the general case of simultaneously taking
account of the fuzziness and randomness of systems and propose a method of
fuzzy-random reliability analysis for complex systems.
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I1 . FUZZY-RANDOM RELIABILITY OF ELEMENTS

Generally, a complex system consists of some subsystems and a subsystem
consists of some elements,

At present, the elements of system have not yet consistent definition.
From the angle of strictness and convenience of analysis, in this paper, an
element is defined as a minimum unit with certain response constrained by cor-
responding limit. According to this definition, an element needn’t be a con-
crete member of the system, When the action of a member is represented by its
several responses with corresponding constraints, this action should be repre-
sented by several elements, In this sense, an element is equivalent to a cons-
traint of the safe criterion of the system. For example, if the action of a bar
in a truss is constrained by both its strength and stability, then this bar will
have two failure modes, and thus, as a member of the truss, it may be repre-
sented by two elements,

Assume the engineering system under research has following characteristics,

(1) The N physical quantities x,(n=1,2,...,N) representing the design
scheme of the system constitute a design vector

X = {ng..-)xn)---yxn} .

(2) The M independent random parameters n.(m=1,2,...,M) in the system
constitute a random vector

r' :{n1;-~~;n-;~--;“u}-

Obviously, every realization of 1, Y={Y¥s,...rYar... ¥}, is a vector in Eucti-
dean space R".

(3) There are L elements in the system. The behaviour response of the Lth
element is denoted by r, (l=1,2,...,L) and the maximum value of r, by S,. The
maximum response vector

S = {Sx;---;st;~--)sl.}

decides the safety of the system. Every response Sy is the function of x and n.

In the reliability analysis, it is generally assumed that the design vector
x and the probability density p, (¥ of the random vector n are known, When
only randomness in the system is considered, the safe criterion of the lth
element can be expressed by following relationship,

Se(n)y < ReCn)d O
or

g (N =RCn) -5Cnd> > 10 2

in which S((n) is the maximum behaviour response of the 1th element of the
system due to external excitation, Rg(n) is the threshold limiting the response
Se(n), 9,(n) is called the behaviour function of the Lth element.

Thus, the safe region of the Lth element according to the safe criterion
(2) is

Q¢ = {y | 9(y>>0} &P
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It is a set which is made up of those realizations y of the random vector n
satisfying g, (y>>0. In fact, Q is a random safe event.

If n. is a random variable in the probability space (E.,AP) (m=1,2,...,M),
then g,(n ) will be a random variable in the derived probability space
(R",B,PO'"7, i.e.

Q, = {ylgw>0) € B 4
Therefore, the random reliability of the (th element is
P = Prigu(n)>0) = Jf p,(ydy (5)

Generally speaking, since the external excitation and the system itself may
have not only randomness but also fuzziness, sometimes the fuzziness is even
preponderant, these two kinds of uncertainty should be taken into consideration
in the reliability analysis. Besides, the threshold R,C(1n ) is generally fuzzy,
i.e. there should be a fuzzy boundary ( an intermediary transition) between
absolute permission and absolute impermission of the behaviour response.

As a general case, when the randomness and fuzziness of the excitation and
the system and the fuzziness of the Limits on the behaviour responses are simul-
taneously taken account of, the fuzzy-random maximum responses and their allow-
able intervals can be respectively expressed by S,(n ) and R, Cn) (1=1,2,...,L).
For any realization y of the random vector n, S,(y) and R,(y) are two fuzzy
subsets on the Euclidean space R* and have the membership functions similar to
the shapes shown in Fig.1. The horizontal coordinate r, is the behaviour
response of the Lth element.

Obviously, S,(n) and R, (1)
are fuzzy-random variables'®’ in
the derived probability space
(R", B, Py).

The membership function of the
maximum response 3, (y) as shown in o (Y,Ty)

Fig.1(a) can be derived from the
membership functions of the fuzzy 10
parameters of the system and exci-
tation by means of the method of
system analysis and the extension
principle of fuzzy mathematics. 0
For example, the membership func- Y,
tions of the fuzzy responses of a RoaCy, Ty)
structure due to an earthquake with -t
certain fuzzy seismic intensity can 1.0
be derived from the membership 1
function of the fuzzy intensity by !
means of the earthquake response }
1
1

(a)

(b

spectrum method and extension prin -
t2-31 o

ciple

According to the membership a, a,+d, T
function of the fuzzy allowable

interval R,(y) as shown in Fig.1(b), Fig.1 The membership functions of the
the response r, <a, is absolutely fuzzy maximum response of the element
allowable (p,=1), the response and its fuzzy allowable interval
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r, >a,+d, is absolutely unallowable (p,=0) and the response between above two
extreme cases, a, <r,<a,+d,, is allowable to a certain extent (corresponding to
the vatue of membership degree p,>. This means that the allowable interval
R, (y) has a fuzzy boundary on the real axis, or there is an intermediary tran-
sition between the absolute permission and absolute impermission. The length of
the transition d, may be calted permissible deviation. A proper curve of the
transition can be chosen according to the character of the element.

Therefore, for the system having both fuzziness and randomness, the fuzzy-
random safe criterion of the 1th element can be exressed as

S, (nYESR (1) 6

Using the notation of L_A. Zadeh, the fuzzy safe region corresponding to the safe
criterion (6) can be expressed by

Q= S gDy I SuMER(Y} o

It is a fuzzy set which is made up of those realizations y of the random vector
n which make the maximum response S,(y) satisfy the safe criterion (6) to a
certain extent (i.e. with menbershlp degree R YD This set, in fact, is a
fuzzy-random safe event.

For a given realization y of n, the fuzzy-random safe criterion (6)
becomes following fuzzy safe criterion,

S.( SRy 8)

which, in fact, is a constraint to fuzzy response S,(y). For different realiza-
tion y of n, the satisfaction degree of 5,(y) to this constraint is different.
This satisfaction degree is also the ne-bershlp degree un(y) for the reali-
zation y to the fuzzy safe region Q,

The relative positions (Fig, ) 1o
of the membership function curves
of fuzzy maximum response S, (y) o T
and its fuzzy allowable interval ~
R.Cy) vividly show the satisfac-
tion degree of S,(y) to fuzzy con- 0
straint (§). We have sugges- %
ted"* *’ that this satisfaction Hoxy
degree could be defined as Lo

Ch)
By (Y= Hg (V) B,
I: Haly, 10, (y, rdr, (]

= 9
L2 By rdr,

H
1.0
When p, is covered entirely by
the interval of u,‘l (Fig. 2a),
the constraint (8) is satisfied
completely, B,=1; when p, is 0

located entirely out of u,L(Flg

2c¢), the constraint (§) is not Fig.2 Relative positions of the membershlp
satisfied absolutely, B ,=0; while functions of fuzzy maximum response and
u:£and M overlap each other its fuzzy allowable interval
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(Fig.2b), the constraint (8) is satisfied to a certain extent, B, € (0, 1.
Therefore, the set consisting of all y which make B ,(y)=po(y)>0 is just the
support set of the fuzzy safe region Q, expressed by Eq.(13ﬁ

Thus, according to the probability formula of the fuzzy-random event, the
fuzzy-random retiability of the lth element is

W, o= Pr(Qy) = S0, (¥ By (10
in which Ha(Y) can be calculated by Eq.(9).
M. FUZZY-RANDOM RELIABILITY OF SUBSYSTEMS

A complex system is often composed of some subsystems. A subsystem is a
part of the system, its safe region can be easily determined. Such as series,
parallel, and compound series or parallel subsystems are often used in complex
systems. Of course, sometimes they may be used as independent systems also.

1. Series Subsystems

A series subsystem is schematically shown in Fig.3. Assume the ith sub-
system has |, elements in all (I, <L).
According to the definition of a series
subsystem, the subsystem can normally I : l l : i "“‘{::::}"_‘

work only when all of its elements are

normally working. So, the fuzzy safe Fig.3 Scheme of the series subsystem
region of a series subsystem is
&
Q, = N Q¢ (D

in which Q, is the fuzzy safe region of the 1th element. Q, is expressed by
Eq.(7) and its membership function ug(y) can be deternined'iy Eq.(9). Accor-
ding to the basic operation laws of fuzzy sets, the membership function of the
fuzzy safe region of the series subsystem can be yielded as
0
P = Hin ka(y) aw

Then, according to the probability formula of the fuzzy-random event, the fuzzy-
random reliability of the series subsystem is

Y 2 Pr(Q,) = [P0 By 13

in which p, can be determined by Eq.(12).

2. Parallel Subsystems

A parallel subsystem is schemati- |
cally shown in Fig.4., Assume the ith
subsystem has [, elements in all (1, <L). 2

According to the definition of a paral- —
tel subsystem, the subsystem will fail
only when all of its elements fail. In
other words, if any one element is nor- Li
mally working, the subsystem will nor-

mally work. So, the fuzzy safe region Fig.4 Scheme of the parallel subsystem
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of the parallel subsystem is

L
Q, = U Q, (1
and its membership function is
L
o= n:g): “&fy) 15>

Then, the fuzzy-random reliability of the parallel subsystem can be obtained as
Y o= Pr(Q,) = pru(y)unﬁy)dy 16>
~ -0 ~i
in which p, can be determined by (15).

3. Compound Series and Parallel Subsystems

When some elements themselves in Fig.3 or 4 are series or parallel sub-sub-
systems, the subsystem shown in that figure becomes compound series or parallel
subsystem. In this case, the sub-subsystems should be anatyzed beforehand and
considered as simple elements afterward in analysis of the whole subsystem,
Then, the methods mentioned above can be used also to determine the fuzzy safe
region, membership function and fuzzy-random retiability of the compound series
and parallel subsystems or systems,

IV. FUZZY-RANDOM RELIABILITY OF COMPLEX SYSTEMS

In analyzing the reliabitity of a complex system, first of all, the system
should be decomposed into several subsystems (including compound subsystems and
individuat etements to be considered as subsystems). Suppose, there are I sub-
systems in all. Then, find individually the fuzzy safe regions Q, and the mem-
bership functions pg(y> for all subsystems (i=1,2,...,1). After that in the
reliability analysis for the whole system, all subsystens can be considered as
elements of the system.

In order to find out the fuzzy safe region of the whole system, the concept
of "minimum safe set"™*’ E, (k=1,2,...,K) can be used to express atl of the K
safe modes of the system. Each E, is a subset of the set {1,2,...,1} consisting
of all ordinal numbers of the subsystems, i.e.

Ec{l,2,...,1} k=1,2,...,K0

Since each ordinal number in {1,2,...,1} corresponds to a subsystem, E, can be
also regarded as a subset of the set consisting of all I subsystems. The mini-
num safe set E, has such a property that the system is safe when all of the
subsystems in E, are safe. And at this time, other subsystems which don’t
betong to E,, whether they are safe or not, have no effect on the safety of the
whole system. So, E, represents the kth safe mode and the corresponding fuzzy
safe subregion of the system is the intersection of all Q, (i€E,), i.e.

QM =N @, an
i€E,
in which Q, is the fuzzy safe region of the ith subsystem.
As for complex systems, their minimum safe sets may be determined by using
system analysis techniques, such as the fault-tree method,.
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Since the safety of the system must at least include a certain minimum safe
set in which all subsystems are safe and corresponding to every minimum safe set
E, there is a fuzzy safe subregion Q‘*’ which can secure the safety of the
system, the entire fuzzy safe region of the system is the union of all K fuzzy
safe subregions, 1i.e.

K
Q = U Q% = LJ n ., 18>
~ k=1 = w=1 i€Ey,
Therefore, the membership function of the entire fuzzy safe region Q of the
system is

K
(y) = max min ) 19>
Ho y ket {¢E, un§y
in which pg(y) is the membership function of the fuzzy safe region of the ith
subsystem and can be determined by the methods mentioned in Section II.
Finally, in the Light of the probability formula of the fuzzy-random event,
the fuzzy-random reliability of the system can be obtained by

¥ = Pr(Q) = {:pn(y)u%(y)dy @11D)

in which P, (¥), as abovementioned, is the probability density of the random
vector 1 and is generally known beforehand., It is easily seen from Eq.(20)
that the reliability ¥ of the system is also the expectation value of the
membership function p,(y) of the fuzzy safe region Q of the system.

IV. TWO SPECIAL CASES —— FUZZY RELIABILITY AND RANDOM RELIABILITY

In general, the maximum response S, of any element and its allowable
interval R, may possess respectively one of the following four possible charac-
teristics, deterministic, random, fuzzy and fuzzy-random. The combination of all
their possible characteristics has 16 kinds of cases in all. We will only dis-
cuss the following two important special cases.

1. Random Reliability

When the maximum responses S, (1=1,2,...,L) of all elements and their
allowable intervals R, have only randomness without fuzziness, the safe region Q
of the system will have distinct boundary. For any realization y of the random
vector n which betongs to Q, po(y)=1, otherwise pgo(y>=0. In this case,
Eq.(20) becomes

¥ o= Pr(Q) = J, pu(y)dy QD

which is just the random retiability defined in current reliability theory, i.e.
the reliability taking account only of the randomness in the system.

2. Fuzzy Reliability

When the maximum responses S, (l=1,2,...,L) of all elements and their
allowable intervals R, have only fuzziness without randomness, and hence there
is no random vector in the problem, the membership function of the safe region
of the system will become constant p,. In this case, since

{wpn(y)dy =



Eq.(20) becomes
¥ = p% Q@

which is the membership degree of the system response to the fuzzy safe region
and may be named as fuzzy reliability of the system. It is seen from this case
that even there is no randomness in the system, the fuzziness will also lead to
some uncertainty in the safety of the system. So, for this case, the reliabi-
lity analysis of the system must be made also.

V. CONCLUSIONS

In this paper, the concept of reliability is extended and the method of
fuzzy-random reliability analysis for the complex system with multiple failure
modes is presented. The system under discussion may have various kinds of
members and one or more than one constraints may be imposed on each member.

Each constraint corresponds to one element. The random vector n under consi -
deration represents all the random parameters in both the external excitation
and the system itself.

When some uncertain factors in the system become deterministic ones, the
corresponding reliability is only a special case of the fuzzy-random reliabi-
lity. Specially, for the system which only include fuzzy factors without random
ones, the safety of the system should be measured also by a reliability, i.e.
fuzzy reliability,

In our previous papers [3] and [9], the fuzzy-random reliability analysis
of aseismic structures with single failure mode'’’ and with multiple failure
modes'’’ are respectively made. They will serve as examples of the application
of the theory presented in this paper.

The reliability analysis of a system may serve as the basis of the decision
of the system, So, this paper provides a possibility for the decision of
systems taking full account of various uncertainties in the problem,
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