71

MATHEMATICAL MODEL OF FUZZY DISCRIMINANT ANALYSIS FOR LOGICAL CHARACTER
Gue~Sizhong
Dept. of Math. Fuxin Mining Institute, Liaoning, China,

This paper presents a model of fuzzy discrimination, where the discriminant
factors are linguistic variables. We treat discriminant facter levels as the
fuzzy subsets on the cerreponding universe discussed. We use the maximum
membership principle as the criterien in order to establish the discriminant
functions. Hence, we may base the study of classification of an object by

means of natural language analysis.

KEYWORDS: Linguistic variable, Fuzzy discriminant function, Fuzzy pepula-

tien.

1. Introduction

It is well known that in the theory of classical discriminant analysis,
the discriminant factors are all real variables. However, in many practical
problems, the discrimimant factors possess only a qualitative difference not

a quantitative differece. For instance, the sexuality and the occupation
etc. Because the qualitativevariables play an impoertant role in many discri-
minant problems, the theory of qualitative that changes qualitative analysis
to quantitative analysis hased on two-valued logic has been preéented. In
fact, many qualitative variables are usually the fuzzy concepts, for example,
“rine”, “cloudy”, “overcast”™ for the weather and “ high”, * low”, * normal” for
the blood pressure etc. It is not suitable that we use methods of general
discriminant analysis and the theory of gualitative.

The theory of fuzzy subsets established by Le.A. Zadeh prevides a suitable
mathematical method to research the fuzzy objects. With the aid of the theory
of fuzzy subsets, we suggest a discriminant model of linguistic analysis.
Using this model, we may classify the samples according to different popula-

tions.
2. General description of fuzzy discriminant analysis

Let discriminant facters A1, doyeesy dp be p linguistic variables, X;=



Xi1o Xsp0eees Lip b 4 finite “value domains” of o, where X, is a fuszy

subset, it is called a level of factorcii, i=1425000yD3 j=1,2,...,ri. We
consider the ordinal set which consists of all levels of factars<ﬂ1,ci2,...,

dp as a universe discussed
u={ X, 1%, 2,...,x1r1,x 212%5 2,...,x2r2,...,x 10X 2,...,xpr} (1)
The observational sample t can represent as a fuzzy subset on U.

,'P,"‘{Fl("y")’ }‘1(192)9"-’ /‘1(191’1)"'" P(P91)’-~', F(P,rp)} ’ (2)
where u(i,j) is the membership grade of t to level gij' The fuzzy subset %

is called a response vector of sample t.

Suppose that there are k populations S1, Sz,...,Sk, and there are m known

samples from the population Sv ( v=1,240409k ), where the membership rela-

tions of each sample to populations is all clear and 5 mv=m. Now we con-—
v=1
sider p discriminant function<x1,<x2,..., dp about there samples. Fer each

0( i= oo . . . ose . o and
3 (i=1,2yeeey p ) there are r, levels X.4y X;59eeey X, o They are respec

t%vely some fuzzy subsets on the cerresponding universe discussed, and
gz%ri = N

After observation and analysis of these m sample, we obtain m response
vectors, and put them inorder as Table 1. It is called the response matrix
of factor levels, there/ul(l,g) denotes a membership grade of the 1lth sam—
ple t of population S to the jth level X, i of factor d,, obv1ously¢m1(1,3)

€[ 0,1 ]o We denote BR= [zul(i,j) T

We have two explanations for the level 5ij of factor.

(1). gij is a “value” of the linguistic variable o .. It is a fuzzy subset
on the corresponing universe discussed.

(2). Suppose that J is the samples space and T is a set of m observational
samples tX (V= 14250004k3 1= 1,2,...,mv) which are from k known populatiens,
We take

2 .2
P 1 k  k

1 1
{t ) t gocey t ,t ,t ,.oc’t ’oco’t ’t "OO’t ] (3)
17 "2 m, "1 2 m, 1772 nk}

1]
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Table 1. Level response matrix

X11 X12‘..... X1r1 X21.O.... X2r2...... Xp1..‘..‘ Xpr

p
1 1 1 1 1 1 1
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mm(1,1) um(1,2)..”um(1,gq)dnm(2,1)..4um(2,r2)..4um(p,1)..qum(p,rp)

°0o
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TeJ , and zij may be censider as a fuzzy subset on T.

For a given sample t€J, the membership grade m(i,j) expresesses a true
value of the propositien equivalent to a assignment equation.di=.§ij where
Eij(t) is also called thefuzzy variable.

The purpose of the fuzzy discriminant analysis is that on the basis of k
pepulations and n levels of factors establish k satigfatory diacriminant
functiems.

T, (8)= 2.0 Xyq(8)s Xpp(t)seceecssX  (2) ] (4)
p

v=1,254ee9ke The discriminant functien fv is a fuzzy logical function formed
by fuzzy variables gij(t) through finite eimes \/ 4, A ,c, where

X () E(¢) & max [ 2,(2), X4(4) 18 X,(2) + Xy()

X (A Z(2) & min [ X, (%), X,(8) T8 X;(8)K,(%) (5)

C A _
x(t) 21 - X, (%)

n

w o

»

Suppose that fv shews a objective gtate Dv’ then yv(t) is a true value of
the population “the state of t is DJ’.
For the response vecter 3 of a given sample, we can find out corresponding

yv(t), V= 1,240009k, and we take the maximum membership orinciple as discri-
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minatory criterion. For sample t, if
yv(t) = Max{y,'(t), yz(t)f"" yk(t)} (6)
then t is classified into population SV.

3, Establishment of the discriminant functiens

In this section, we will give a general methed of esablishing discriminant
functions.

Definition 3.1 We take thelevels of factor as logical variables, f is
called a fuzzy distinguished disjunctive nermal ferm, if f is a disjunctive
normal form and for all (i,j), either §ij(t) or ’)g:J(t) must occur in each
disjuncte

Definition 3.2 If f(t)>% for all value assignment of the fuzzy wariables,
then fuzzy logical function (4) is called the fuzzy always true fermula, if
f(4)<<% then the fuzzy comtradictory.

Proposition 3.1 A fuzzy logical function f is the fuzzy always true for-
mula, if and only if f is a always true formula in two-valued logic.

Propesition 3.1 Explains the relation between the fuzzy logic and the
two-valued logic. Using this Prepesition, we easily obtain a method to esta-
blish the fuzzy discriminant functions which satisfy formula (6).

Suppose that we take m samples from k populatioas, Table 1 is their res-
ponse matrix R. We replace the elements /u.fl’(i,j) of R by 6‘{(1,3‘), where

Y 1, (M‘lr(i’j)z% )

s |

13 7 (BY(1,9)<3 ) "
The matrix R¥ = [5‘{(1,3') Juxg 1S called the truth table of the fuzzy dis-
ciminant functions. In the {truth table, by 5;(1, j)= 1 we mean that the
proposition “oli = Xij” is fuzzy true to t‘lr s and 5‘{(i,j)=0 is fuzzy false
to ‘t‘lr. Thus, the fuzzy propositional calculus in the fuzzy logic may be
changed as the propositional calculus of the two-valued logic. It is easy to
see that the submatrix from 1th row to m1th row of R¥ is a truth table of
discriminant function f,, from (m1+1)th to (m1+m2)th row is a truth table

of f2"'°’ m  TOwWs at rear of the matrix R* is a truth table of fk.
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We mssume that there are no similar samples, i.e.,V’tZe Sw’ t;e Sv’ then

exist at least a pair of i,j so that 5:(1,3') A= 5%(i,j). If there are simi-
lar samples, then reject them from the samples set.

On the basis of Proposition 3.1, the discriminant functions f1, f2"”’ fk
of each populations can be eatablished by corresponding truth tables, all of
them are the distinguished disjunctive normal form. It is easy to see that

for all V=1,2,ooo’k and 1=1,2,...,mv, we have
v v v v
yv(tl)’Ma'x{Y1(tl), y2(tl)9’°', yk(tl)} . (8)
Each disjunct of the discriminant function f is called a miner term of the
i
distinguished disjunctive nermal form, it described a possible state which is

shown by sample t. In the truth table of fi’ each row vector is called a

assignmen of a sample state.
A, The completeness of the discriminant function group

Definitien 4.1 let the population S1, 52"”’Sk be a partition of the sam—
ples space, fi be the discriminant function of Si ((i=15290009k )o f1, f2,
eoey fk is called a complete group of discriminant functions for the samples
space  , if for an arbitrary sample +t€J ., there exists a discriminant func-
tien f (v=142,0009k), 50 that

£ (t) > Max {kfi(t) } (9)

121,25000y
ixv
It is well known thatn proposition variables can form2™ minor terms.

Because each minor term which is constituted by n fuzzy variables vgij(t)
is a possible state of the sample 1, all possible states of samples have of
kinds when we consider n factor levels. To sum up the above mentioned, we
easily see that f1, f2,..., fk is a complete group of discriminant func-
tiens fer & , if and only if there exist 2" different assignments of the
sample states, where n is a number of facter levels. In some pratical pro-
blems, because the discriminant factors and the factor levels are so many
and observational datas are not adequate, it is difficult to establish a
complete group of discriminant functions.

In this paper, we consider a kind of particular case — the discriminant
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factors are ordered linguistic variables statistically correlative with the
populations, a method of establishment of the discriminant function is given,
and the misjudgment of the discriminant functions can be decreased.

Definition 4.2 Let A be a fuzzy subset on X. The nucleus of fuzzy sub-
set A is a classical subset on X, denoted by

H(A )2 {x| xeXxand A(x) =1} (10)

Definition 4.3 let X be a ordered set by order relatiom £ , §1, NAZ
be two normal convex fuzzy subsets on X, X, be a maximal element of H(é1)
and x, minimal element of H(;@z). If (1), X< Xy (2) | there exists a ele-
ment x.€ X, 8o that ¥ x€ X, when x<x

¢} 0
we have A1(x)SA2(x), then we say A, is anterier to 4,, denoted by A,<A,.

, we have A1(x)2'1}'2(x); when Xx,<X,

Definitien 4.4 Let é1’ 52,..., "én be n normal convex fuzzy subsets on
X and for the relatien <, and é1‘<52'<""<'én’ then {'{.1, Aoyecey An} is
called a group of the erdered fuzzy subsets on X.

We take usually the real number field as X, thus the relation < may be
denoted as < .

Definition 4.5 If a set of levels of the facteor oki can be expressed as a
group of ordered fuzzy subsets on a ordered universe discussed, then the set
of levels of the factor is called the ordered, and oli is called an ordered
linguistic variable.

Definition 4.6 Let s8%2 { Sys Spseeey S} be a set of all populations, we
define an order relatiemn < on ;3 such that

S1 ~< 82-<... < Sk .
If there is a statistical correlation between the populations and the varia-
bles of ordered set X, then we say that the ordered linguistic variables
are correlative with the set ¢ of populations.

(1). The establishment of a complete group of discriminant functions for
the two-clags discrimination.

What is called the two-class discrimination is that the set of population
8 contains only two population, i.e., 8= {S1, Sz} « Suppose that all dis-
criminant factors o&i ( i=1,2544+4p ) are the ordered linguistic variables on
the corresponding universe discussed. Let {511, 512,..., l(ir.} be a set of

. i
the levels of o(i, and for order relatien 1(11 < 512{'"‘(2&1‘1 and S1< 82,



the relation between o{. and 8 is the positive statistical correlation.

Let 5111~212 '.§p1 and ‘5131 232 .'§pjp be respectively the different

states of two samples and 1k;33k ( k=1,240409p ), where 51'5j g.KiA Xj'
Because the relation between d. and (8§ is the positive correlation for

111~21"‘,§ , 1is a minor term of discriminant
function f1, then X1 23 oo X i is also a minor term of f1. We say that
723, S 0

any i=1,25eee9p» Thus, if X

state X «X X 1ncludes the state X, . X ve X for S,e. denoted

11 21 1p 131~232 ovpgp 1
as follows
51
Xgp Xy oo X 0 DX e X . (11)
If 513 é",§pj is a minor term of f o9 then X11 X21 ’§p1 is also a
Iy P
minor term of f,, and we say that state X, X,.-.'*X . includes state
2 ~13~2d, ~pd
511}521;"r§p1 for 32. denoted as follows
- P
Sa
51;}'135232“'5 = X ~21"'r}~(p1 (12)

Definition 4.7 Let Di and Dj be two states of the samples, we say

Sk

that state D, is a sub-state of D, for S, , if D, D..
J i k i J

Definition 4.8 Let ZDk be the collection of the states of all observa-
tional samples of pepulation Sk' State Di is called a maximal state of Sk’
S

k
if D€ ka and for any Djejbk, have DjﬁpﬁDi.

State D1 is called a maximal separated state, if D
Sk
and for any Di’ if Di:) D

1 is a maximal state,

1? have Di ¢.Sk.

If the number of observational samples is not adequate, in the two-class
discrimination, it is usually impossible to find all maximal separated sta-
tes of the populations. However, when the number of observational samples

is larger, the maximal separted states of the populations may be replaced by
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maximal states.

Suppose that D1, D2,..., Dq are g maximal states in m sample states of

population S1, and 401 is collection of all sub-states of D1, D2,..., Dq.

Then the set of all possible states of S ig as follows

"

Dy =Dy Dpperey DFU D, (13)
This way is analogous to replenish artificially some sampled datas in order
to make up the lack of samples. We take all states §1u%§2ué"3§pu in J§1
as the minor terms of the distingnished disjunctive normal form, discriminant
function £, is established consequently, and take f, = f‘1’.

(2). The establishment of a complete group of discriminant functions for
the k-class discrimination.

Let 3 ={ Sqs Sz,...,Sk}, di be the ordered linguistic variables on the
corresponding universe discussed ( i=1,2,+..4k ), and o, is correlative with

8 for the order relation X;4< XiZ""Xir. and S,< 5K Sk'

i
First we partition (8 so that 3= {8(12 S(;)}, where 8(1)=S1, S(1)= {Sz,

1
S3,...,Sk}, to make two-class discrimination to 3 « We apply the maximal
states of 3(1) to establish discriminant function f(}), which is the dis-
criminant function of S1, i.e., f1 = f(l).
After that we partition s(;) so that s(;)= {s(f), sgz)}, where s(f)= 5,9

S(§)= 18 ceny Sk} to make the two-class discriminatiom to S(;). We

37 50
apply the maximal states of S(f) to establish function f(f) now the discri-

minant function of S, is f, = f(f)- £, ( f(%)—f.‘ means that all disjuncts

(2)y.

of f1 are cut out from the formula f 1

On the analogy of this, we can obtain discriminant functions f1, f2,...,

; then take f, =(f,+ fytecet £ )C.

T k=1

5. Fuzzy discrimination for fuzzy populations

Population S is called the fuzzy population, if the membership relations

of samples for the population S are not clearcut, and S can bexpressed by a
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fuzzy subset on certain universe discussed.
Definition 5.1 Let §1, §2,...,'§k be a group of the fuzzy subsets on the

universe discussed U, §i(u) be membership function of §, ((i=152y0009k )
k

If we have 3~ Si(u) = 1, for y ueU, then {S,, S,y¢++, §,} is called a fuzzy
i=1 ~

partition of U.

In the fuzzy discrimination for the fuzzy populations, §1,,§2,...,’§k are
a fuzzy partition of the universe discussed U. For any sample tjéﬂ'. there
exists only a uje U corresponding to tj’ thus we can obtain respectively

all membership grades of samples to each population .. we write that §i(t)

k
.A-: Ei(uj), i=1’2,.-o’k, and i—Z‘l Si(tj)-‘: 1 L[]

Suppose that t1, t2,..., tm are m konwn samples, we consider p dis-
criminant factors d1, dz,...,<xp, there <xi contains ry levels §i1’

512,...’ zir_
i

( i=1,2yeee9p ), which are some fuzzy subsets on the corres-
ponding universe discussed. Our purpose is to give a mathematical model of
the discrimination on the basis of the response vectors of observational
samples t1, t2,..., tm and the membership grades of the samples to pepula-
tion Si ( i=1,2,ooo,k )o

First, using maximum membership principle, we divide the set of the sam-
ples J’'= {tq9 toseeey tm} into k-classes if

5,(t) = Max  {8,(6)F , (14)
i=1,25e0049k
then tj belongs to populayien §v. Then according the section 4, we can
establish a complete group of discriminant functions f1, f2,..., fk'
Denote

le = fi(t:j), siJ = %(ti)’ i=1’2,‘°”k; j=1’2!°"’m 2 (15)

there yijis the true value of the proposition ““t belonging to the state

7

PS. to sample tj.
1
Let Y91 Y12 ***T1p S1q Bqp eoeSqg
R,(Dgs7 )= Y21 Y22 ***Yom|,and Ry(T 43 ) = 21 sgz *eeBox| (16)
Y1 Y2 ***Yxm Sm1 Sm2 ***®mk
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there ;DS ={Dg y Dg seeey Dg} , Dy is a set of the sample states of the

pepulation §i i=1424eee9k 5. R1 {% afuzzy relation on ;DSx:T’, and R2

on 7'xs8 . Using the cosposition product of the fuzzy relation matrix, we

can obtain a fuzzy relation on QDSXiS-

Q99 Yo o0 U
Apq Qpp ooe Ao (17)

- I3 *
. . .

S V= o =
ADgy55 )= By® By
Qeq Ao oo Yy

where Q =R,° R, & q,. = Max [ Min ( Yi10 slj) 1, Q is called a

2 +d 1=1,2,000,m
fuzzy transformation from the state set of samples D, = {Dg 5 Dy yeeey Dy}
S S1 32 Sk

é{.f1, f2,..., fk} to the set of populations 3 = §S1, 32""’ Sk}_

For an undetermined sample 1, we compute

T
;\{, = (y1’y2"", yk )

where y, = fl(t), 1=1,24+.. k. Compute

[q11 R TR 1 1
Qo ¥ = |12 %2 et Yoo | T2 [ (18)
- 3 : H s : ;
1k ok *°° Ik Yk “k
where ¢, =  Max [ Min ( a0 ¥y )] denotes the possibility degree of

1=3p2p90q,k
sample t Dbelonging to population Si'

The fuzzy discriminant analysis is not only used to classify samples which
are expressed as name of compound linguistic variable, and to describe the

character of researched populations by means natural languages.
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