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In this paper the definitions of improper integrals and series
of fuzzy numbers are introduced anﬁ other related objects are defined,
Text their properties are presented. In spite of it that we have re-
ceived results similar - in form - to the classical theory it will be
clear to everybody after having read this paper that the presented
theory is different Ifrom the theory of crisp improper integrals and
series of real numbers., In this paper we will use tne notions and

derinitions rrom [1], (27 and [3].
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2. Improper integrals,

Recall that the definite integral. is defined only for fuzzy mapping
bounded on a finite interval, The definition of the definite integral
breaks down 1f either the fuszy mapping is wnbounded or the interval
is infinite, When this is the case, the definition of the integral is
generalized by taking the integral over sultable finite intervals on
which the fuszy mapping is bounded and then eomsidering the 1limit of
those integrals. If the limit exists, the gencralised integral is sald
to converge and if the limit does net exist the integral is said to
diverge., Such integrals are called improper or infinite integralsi

Suppose T is integrable on [a,b] for each b > a and let
G(b) = _};F whers b € [a,> )¢ Then ZF is called an improper

(infinite) integral of the first kind.

o0
We say that J F converges if %Gandinsuuhacasethevalm
a

OO0

f T is 1im G, i.8.,
a o0

oo b
JPw 14mG(b) = 1m [ P,
a

b+ o0 b+> a

If 14m ¢ does not exist, f P 43 salid to diverge,
e a

Suppose I’ is bounded and integrable on each interval [ag0] where
c

c€ [a4b), but unbounded on [a,b] and let G(c) = [ F where c € (agh).
a

b
Then ( F is called an improper integrel of the second kind and the
a
b
value of [ F 1is 1%@_ ¢ 4if this limit exists.
a
Thus b c
fF= 1im G(c) = 1m J F.
a c»b” c+b a

Let I be bounded and integrable on each mtma% (cpdl , where
¢ < (a,bl , but unbounded on (a,b] and let G(c) = [ F whare ce (apdls
c
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b
Then [ F is said to converge if uz‘:;Gemtsmxdinmahacw
a a
b
the value of [ F is 1im G , 1,e.,
a at

b b
f F= lim G(e) = lim | F,
a c—-at crat ¢

Ir lixg_Gdaesmt exist j}? is said to diverge.
a a

20 a o0
The improper integral _f F is defined to be [ F + ] F vwhere
N -0 o0 a

a o
a is any real number. If both of the integrals [ F and { F con=
- 00 a
o0 a o0
verge then fF issa&dtomnmgeandﬁeitheer or jF'
%o | _J ”

diverges then f F 4is saild to diverxrge.
Theorem 2.1. I£ F and G are bownded on [a,*) and J F and
a

oo
S & both converge, then
a

(1) T(Fw)mnm@sand f(m+g¢) = JPe Jfa,
a a a a

o [~ o0
(2) J oF converges and ch-c'fF for any constant c
a a a

Proof. Since for any b €la, )

b b b
J(FeB) = (F 4+ (G (see (3] )
a B a

b b b o oo
1m ((FeG) =1tm (P + 1im (G= JFs+ JG,
bw>x a be> @ bwec a a a
(mf”]).
[-and

Thus | (PeG) converges & and
a

J(F“"G)'IF* }oﬁ't
a a

Also, since

oo b oo
m [(oF= Um ¢ JPoo:lim [(Fmec-SB
br>oe a b o a b+ a a



°° ' oo b
Jﬁmgsandjc?-c',f?.
a a a

Theorem 242, If F and G are continuous with respect to the metric

Donf[ap>), U s P(t) < G(t) for all t€(ay,>), and | F converges,
a

then fmé converges, where U is the f;z.zzy number such that for any %
a
1 4f =0
O(t) = {
0 otherwise. _
b b
Proocf. let Ht(b)-fFandHa(b)ujG.SmcoFandGm

a a

nonnegative fuszy mapp * K.' and H2 are nondeoreasing and for all
be [ay=) .
Ts<H(b)s B(b) s Joa,
Hy(b) € H /

. oo
Ihusﬁ1isabcmdedmnnotonicmévmappm,sn lim H, = fF
oo , a
exists.

Corollary. If ¥ and G are continuous with respect to the meixric D

on [ay=), U < G(t) sF(t) zfor all t¢la,>), and | ¢ diverges,
a

o
then J F diverges.
a
Proofs Suppose | F converges. Then, By the above Theorem J G
a , : a

converges contrary to hypothssis. This proves the corollaxry.

5+ Series of fuzzy numbers.

n
Let {X, 3 be a sequence of fuszy nuubers, and sn'E‘xk’
The sequence {5, } 1is ocalled a series and the terms of {X, U ave

called the terms of the series.
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e

We usually denote the series {Sn?; by X, or, merely 2. X,
lo=1

If the sequenoce {Sn} converges to the fuszy number S, then we say
that the series 3 X, has the sum S or Z,Xk converges to S. The
sum 5 of the first n temms of the series is souetimes called a
partial sum., Thus our definition states that a series converges if
and only if the sequence of partial sums converges. Since a seguence
nay or may not converge, a series may or not have a sum.

-

If the series E‘ka hasthems,thensulmsn where

n n o
Sn'rZ« XK.H&IGQ S= lin Zxk.?r‘iewﬂ.lwite SxZXk.
Jom 1 n-»o ket kml

Ve now give some properties of series of fuzzy numbers, Using
the theory of sequences of fusgy numbers, we obtain these propexrties
of series from the corresponding properties of finite sums.

Theorem 3 .1, If = X, and 3.7, ave convergent series with
swus X and Y, respectively, and if ¢ is a vrela number, then
(1) 35 (RAY,) converges to X+¥,
(2) > oX, converges to ¢'X .

Proof. We prove (1) only, The moof of the second part is similar,
Using the properties of the limits of the ssquences of fuzzy numbers

we have

n n n
e 5 (XY ) = e (2 X+ 3 1) =
n»>s0  komi ne» oo fomd k=1

n . n
nvoo lo=t n-+oo lwt
w X + Y

According to the basic concepis, 1f we wish to determine whethex

the series 2 Xk converges, all we need do is investigate the con~

n

vergence of the sequence {S, ¥ whexe Sn'h%xk*mmtmw
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cases We are not able to obtain an expression for S,, from which we

cen determine the convergence of {S_ }. Thus, it is desirable to
evalue criteria for the convergence of the series I X, in terms

of the sequence {X, }. The basic test for convergence and divergence
of series with nonnegative texrms is the comparison test,

Theorem 5.2, If 2 X, end ZYk are series with nonnegative
terms, if 31Y, oconverges, and if X, € Y, for all k sufficiently
large, then 2> X, converges.

Proof, Suppose X, < Y, for all k greater than some positive inte=~
ger N and 2 Y, = Y, Them, for all n> N

S = X, = 57 X, o+ X, £ 2% X, ¢+ <
Tt R ol R et BT gt K eamer K
N
lo=1
N
Since ¥ 20, 5, ¢ hZ-; X, + Y for all n and, henoe, {Sn} is bounded,

Thus, 3. X, converges.

Corollary, If 2 X, &and 3°Y, are series with nonnegative terms,
i 35 Y, diverges, and i1f X, > ¥, Zfor all k sufficiently largs,
then 2. X, diverges.

Proof, Suppose 3 X, converges., Then, by above Theorem, 31,
converges contrary o hypotheais, This proves the corollary.

We now give another convergence teast for series of fuzgzy numbers
in which we compare a series with a corresponding improper integral,

Theorem (Integral Test), If 3 X, 4s a series with nonnegative
terms and T ic a nonincreasing continuous fuzzy mapping on the interval
[1,1 ) such that F(k) = X, , then T X, and J F either both con~
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verge or both diverge,
o0
Proof, Recall that the improper integral { F 1is defined to

be lim })F. Thus, if we let G(b) = }F, then }an 24m G(b).
b 1 1 1 b-»oe
Sinoce on [1,°°) the values of F are nonnegative, G is a nondecreasing
fuszy mapping. |
(1) Assuue { ¥ converges to C. Since F is a nonincreasing fuszy

mepping, if k 2 them X = F(k) < F(t) for t¢ [kwi,t] and,

k
therefore,
Fad
X, = X, £ F
L L T
Phen
= 2 [ TP sx, 0
S, 6 = , X, S + = + < + Co
n oy MY e i I LI

Thus, {Sn3 is a bounded nondecveasing sequence and, hence, 3. X, con-
verges.

(2) Assunme fF diverges. Since
1

X, = P(k) > F($) for tellklell,

k}-‘t ' k}-i
X = X ? F -
k x K k
Then
n n k+i D+l
2 et k=1 k 1

[~ -4
and, since J I diverges, the sequence 1| Sn3 diverges, Therefore
1 ‘

> X, diverges, This completes the proof.



M, latzoka,
o Tattoka,
BUSERAL (in

n

. YatZoka,

32

References

Sequences of fuzzy numbers, BUSHEVAL (in print).
Limits and continuity of the fuzzy functions,
print).

T, (in print),

On integral of fuzzy mapping, BUS



