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Abstract
In this paper a fuzzy cubic matrix is definited, and some
operations of fuzzy cubic matrix are introdcuced. Applying
wWe

them, discussed some problems of fuzzy cubic matrix

Keywords: Fuzzy cubic matrix.

I. A Definition of Fuzzy Cubic Matrix

Definition 1.1 An arrangement of mxnxt elements of (0,1} in

’

@ rows, n coluans and t storeys {see (1) ) is called a

axnxt fuzzy cubic matrix, denoted by A=(g . . )
‘ 1ik’mxnxt °
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Its row i, column j, storey k are respectively shewn by

shadew part of picture 1 (a), (b), (c).
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Picture 1

As see row i of mxnxt fuzzy cubic matrix A is a txn

fuzzy matrix

?i'l?““"'a_in'l}

ai1tocacaoa.aintj

and is called row i matrix of A. Similarly column J and storey
k of mxnxt fuzzy cubic matrix A are respectively txm matrix
and mxn matrix

(?1jiooontiooamj1 (?11.k...'...'8.1nk

ka1jt""""émjt {am1k........émnk

and are repectively called column J matrix and Storey k matrix
of A.

As see the fuzzy cubic matrix is a naturural extantion of
the fuzzy matrix.

We definition the particular cubic matrix as follows -

1) 9=(O)mxnxt is called a fuzzy null cubic matrix.
aijk={g: i:g is called a

2) I=( where

2 ik meaem
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fuzzy identity cubic matrix.

3) E=(1)

is called a fuzzy universal cubic matrixz.
mxnxt :

II. The Intersection, Union And Complement

Of Fuzzy Cubic Matrix

In this section let V be the set of a2ll mxnxt

mxnxt
fuzzy cubic matrices. For arbitrary A, B ’Cevmxnxt that is
2=(25 50 manxe? 3505 ) men e C=(e s dmunxt®
s s a A
Definition 2.1 AUB“<aijkaijk)mxnxt 'AAB—(aijkAbijk)mxnxt

is respectively called the intersection and union of A and

Ca _ .
B. AT=(1 aijk)mxnxt is called the complement of A.

The corresponding operations and properties of fuzzy matries
(1)is extanded as follows:

Proposition 2.1

1) commutative laws AUB=BUA, ANB=BNA

2) associative laws (AUB)UC=AU (B UC),
(ANB)YNC=AN(BNC)

3) distributive laws (AUBINC=(ANc)U(BNC)
(ANB)UC=(avuc)n (BUC

4) idempontent laws AUA=A, AN A=A

5) absorption laws (AUB)NB=B, (ANB)UB=B

6) involution law (A%)C=a

7) B UA=A, QnAzé y L VUA=E, E NA=A
Theorem 2.1
1) (v

indentity element.

axnxt’ Y) 18 a commutative Semigroup where @ is a

2) (v ; U) is a semilattice.

mxn«sc’
3) (menxt;(ﬁ) is 2 commutative semigroup where T is a
identity element.

7)) (mext‘ N) 1s a semisattice.



Theorem 2.2 (V N,Y) is a incline.

mxnxt’?

The definitionsof commutative semigroup, Semilattice and

incline see (2].
I1I. The Multiplying of Fuzzy Cubic Matrix

ijk)
is called product of A and B, it denoted by C=AB,
py =

Definition 3.1 Let A=(a then C=

(cijk)quxt
where ¢

mxnxt and Bz(bijk)quxn

ijk=AZNaiAk/\X%JA),(i=1,...mnj=1,...,q,k:1,...,t).

We denote "lJ"‘of definition 2.1 by "+", then we have:

Proposition 3.0 Tn V_. o othere stand:

1) associative law: (AB)C=A(BC)
2) distributive laws: (A+B)C=AC+BC, A(B+C)=AB+AC
3) AI=IA=A

. Theorem 3.1 (V .) forms a Semigroup that I is iden-

mxmxm’

tity element.
Notice: Multiplying of fuzzy matrices has not commutative
law, and so does multiplying of fuzzy cubic matirices.

IV. The Scalar Product Of Fuzzy Cubic Matrices

Definition 4.1 Let A=(aij_)

k mxnxt’ h6[0y1) then

B=(hAa,

i i i and 2
ij)anXt is called a scalar product of a scalar h an

cubic matrix A and denoted by B=hA.

proposition 4.1 Let A= and h,p €

(aijk)mxnxt’ B:(bijk)mxnxt

(0,1), then
1) n(A+B)=hA+hB
2) (h+p)A=hA+pA
3) (hp)a=h(pA)

4) 1-A=a
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Proposition 4.2 For he¢ (0,1}, A:(aijk)mxnxt’ Bz(bijk)quxn’

then h{AB)=(hA)B=A(RR).

V. Fuzzy Cubic Matrix Space

Similar to fuzzy matrix space we define the concepts of
linear dependent, linear independent and linear independent
group and so on (see (3] ),

From theorem 2.1 and theorem 3,1 we abtain-:

Theorem 5.1 Under the operation of the addition and multi-

plication all mxmxm fuzzy cubic matrices form a Semiring.
The definition of semiring see (4).
From theorem 2.1 and proposition 4.1 we obtain

Theorem 5.2 Under the operation of the addition and s3calar

product all mxnxt fuzzy cubic matrices form a fuzzy semi-

linear space , we denote it by menxt‘

The definition of fuzzy semilinear space see (57.

Definition 5.1 A non~-vacuous subset w of annxt is a sub-
1

space of menxt iff for arbitrary A,BéW and h,p€(0,1) there

iS hA+DpB € W.

Proposition 5.1 Intersection set W of arbitrary finite sub-

: +41 a ol
Spaces w1,..;,ws of menxt is still a subspace of menxt’
we write W= N W_.
* c=1 1
3 3y 1 1 7 |y
Proposition 5.2 ILet d1,...,ds be subspace of menxt if W=

]
{AiA=h1A( )+...+hSA(S), hiEEO,1J, A(i)é wi, i=1,...,§}

then W is a subspace of V and 18 called a gum space

mxnxt
Of ‘d1’..."NS'

Proposition 5.3 Let A(W),...,A(S)E v y then all linear

mxnxt
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combination h1A<1)+...+h A(s) where h1,...,hs€(0,13 forms a
o)
subspace of vy ~xt? We Write W= L(A(",...,A<°’

L)

). W i3 called

a Subspace generated by A( ),...,A<s). ,...,A(S) iz

called a genercting set of W.

Proposition 5.4 ILet A(T),...,A(s)é v . and B(1),...,
m XT1 X%

B(p)é menxt' It A(T),...,A(S) are all linearly represented

by 37, ,8P) then pal Ay e @)L 50y,

VI. The Rank Of Fuzzy Cubic Matrix

Definition 6.1 For a fuzzy cubic matrix A~(ale)lext. The set

of all linear combination of its row matrices form a subspace
of VtXn' we write R(A). Row rank Fr(A) of A is the number of
matrices that linear independent generating set contain .
Column space C(A) and column rank (%(A) can be similarly
definited and so do -storey space S(A) and storey rangk (%(A)

If {OI,(A)zp

(C(A)zf’S(A) then (© (A) is definiteq 2 rank of A. If

A=0 then we definite fr(8)=R(A)=@(A)= P(a)=0. Tf A#O we

use the method given in (3} and [6) to find P (A), C,(A) and
Ps(4)

Let A=(aijk)anxt #6, It is lumped in row , column, storey
as follows:
A ¢ ]
A= o =(B .o e == i
N (By, »B_) : }
e} Ct

The subspace generated by row 1, ...,m of A is symboled of
L(Ayse.aya ) then L(a, reeesA J=R(A). The method of finding
linear independent basis of L(A1""’Am) given in (3] and ( 6)

is as follows -
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We observe the first cyciic equations of A1,...,Am :
X
1

X, :
(A1I’...,Ai‘T,Ai+1,'..,Am) l—1 =Ai, <l=7,...,m)

‘%i+1
- |

If they have not solution then A?""’Am is a linear indep-

3

endent basis of R(A), thus f;(A) =m,
If some equation » for example m-th equation , have solution
then L(A1,...,Am)=L(A1,...,Am_1). We study the first cyclic
equation of A1,.;.,Am_1 a:vain,

Similarly we go on'with the above discusses . Such as we
have discussed k-th Stop. The first Cyclic equations of A1,
""Am—k have not solution then f}(A)zm-k. There is such k,

otherwise contradict that A1,.,.,Am are all non-zero.

VII. The Standard Fuzzy Cubic Matrix
— T T TPAS UDIC Matrix

Definition 7.1 For fuzzy cubic matrices A=(a. and

—_— 1jk>mxnxt

)

1) A<B iff for arvbitrary i,3,k there is aijk:éb

b - (3 -
1jk’'mxnxt

ijk*
2) A=B iff for arbitrary 1i,j,k there is a, ., =D, . .
. ijk lgk
1
Proposition 7.1 If to fuzzy cubic matrix there is A=B( +

(s) then A2>B(i); (i=1,...,s).

.OO+B
For the following discusses we Suppose A(1),...,A<S)E

menxt and they are l?fpgf in the row as follows
. pl

- . (P=1,~~o13)

then Aij (i=1,...,s; J=1,...,m Jare all txn fuzzy matrices.

1
Definition 7.2 If there is A(p)in A( ) ,...,A(s) such that
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when A(p)=zz‘kéjA(3) there always is A(p)=kppA(p) then A‘P)
J=
i8 called the standard fuzzy cubic matrix in W=L(A(1),...,

als)y

o If every fuzzy cubic matrix of spanning set of W is
‘a standard cubic matrix, then A(T),...,A(S) is called a stan-
dard fuzzy cubic matrix group in W.

We observe the following equation

X, A(1)+...+ X A(S) = A(p) (p=1,.00,8) (2)

(2) is written in form

-]
e
(3) is called the second cyclie equation of fuzzy cubic

(1)

= A(p) (p=1,...,8) (3)

760 ey

matrix group A ,...,A(S). In (3) for given p (155P’53)

alp) (4)

then ?1)
(WA |
{

:
<A11"."AS1) \ :Ap1
[ . » - - XS
X, - (5)
\(A1m""’Asm) {; - pm
3

As arbitrary solutions of (4) all satisfy (5) and arbit-
rary solutions of (5) all satisfy (4), thus we solve
fuzzy ralation equation group (5) and so obtain all
solutions of (4) . In particular the greatest solution
of fuzzy relation equation group (5) is also the grea-
test solution of (4), the smallest solution of fuzzy
relation equation group (5) is also the smallest solu-

tion of (4), and vice versal.
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Theorem 7,1 A(p) (1<p <s) is a standard fuzzy cubic matrix of

w=L(A<1),...,A(S)) iff for an arbitrary solution (x?,,...,xg)T
of (4) there is A(p)=xo (p)'

. D
Corollary A(p) (1<p<s) is a standard fuzzy cubic matrix of

w:L(A(1),...,A(S)) iff for an arbitrary greatest solution or

smallest solution (iw,...,in)T of (4) there is A(P)zipA(p>.

VIII. The Standard Basis Of Finite Generating

Subspace Of Vﬁxnxt

Definition 8.1 The linearbindependent basis A(1),...,A(S) of

finite generating Subspace y of thnx* is called a standard

basis of W, if A(j)’,...,A(S) are all standard cubic matrices

of W,

Theorem 8.1 The linear independent cubic matrix group A(1),

<

) e . et (a (1) ()
meth 1S a standard basis of W=I (4 peeaghtT)
T

N GO

iff to arbitrary solution (x°

pﬁ""’xgs) of the p-th (p=1,

cessS) equation of the second cyclic equation of A(1),...,
2%5) there are A(p)=xgpA(p).
Lemma 8,1 Let A('),...,A(S) be linear independent and h€[0,1).

1r 4¢2) is a standard cubic matrix of L(A(1),---,A(S)) then
,(2)

is also a standard cubic matrix of L(hA(1),...,A(S)).

Theorem 8.2 The linear independent basis of a finite generating

subspace W of menxt is changed into a standard basis of W .

Proof. We observe p-th equation (4) of the second equation

of A(1) ,...,A(S), Let A(p) be not standard cubic matrix and
the smallest solution of the equation (4) be (x§11) x§11))T

,...,(x$1i1)

| B A )

g1i1))T.

,QOO,X

For xé=min{xé11),...,x£111)} We construct another equation:
i o
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(K11

_1)’X;A(p),A(p+1)'...,A(s)){; )=x A(P) (6)
XS)

i) From the supposition that A(p) is not a standard cubic

—~
ol
—

ke

matrix we easy infer X1A<p>qLA<p) and there i3 some a. ii% in

mxnxt elements of p) such that A {a, i3k
1 1
ii) We infer that A( ),...,A(p“1),pr<p), A(p+ ),....A<S)
are linear independent. In fact so0 long as we prove thail

] _
Xp A(p)can not be represented the linear combination of other

cubic matrices. We use proof by contradiction. If

P-1) =
xlA(p):y1A(1)+...+yD ( Yo, (p+1)+...+ySA<3) (7)
. _— - 1 - -~ \T .
and we 3suppose that (xj,... p_1,xp,xp+1,...,xs)* is a sol-
ution of (4) . Then '
(p)_x A< ) ...+;—<p_1’A(p_‘)+xfpl(p) (p+1 +.‘.+E A(S)

(7) is substituted into (8) and so there is

A(p)=(§1+y1)A(1) )A(P—1)+
+(x

. , {1 S . .
The result contradicd that A( ),...,A( ) are linear inde-—

+...+(xp_.)+yp_1

‘ (p+1) (3

pendent.
1ii) Futher we infer
1 (p—- 1 (D41
(Al ),...,A‘p 1),xDA(p),A“p* ),...,A(S))

(1
=L(A" )

rst as seen

LD, LA ) e

/
S
,c-;-oo,A\ ))

=
e

oo oy

second for any A (n(1) ...,A(S)) we SUppose
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(9)

N

A==y1A(1)+......+ysA(s

1 T . .
z_ )" is a solution

and Suppose that (Z‘] | 2L B I 3 ,up—1 , p p+1 | 2K B B R ] S

of (4) then

(p’*—z A( ) ...+zp_1A&p_1)+x1A(p)+z

(10) is substituted into (3) u 350 there is

— (o (1) v (p=1) .
A—-(J A JA +...+(]p_1.Jpr_1)A %
)

(p+1) _—
+(y. 1)A +...+(js+jpz

p+1 Jp p+ 3

thus L(A(1),...,A(S))EEL(A<’),...,A(p"1),X;A(p),A<p+1),...,
A(s)). So
\

- {
L(A(1),...,A<S))==L(A(1),...,A(p 1),X;A<p),A\p+1),...,A<S})

. -~ 1t (n). . .
iv) If x A(‘)lS Still not a standarg cubic matrix of W.

Let (x(21),..., (21))T,...,(xfa 2),...,x(2l )) is the
smallezt solution of (6). From Ap~m1n{ é21 yeees
x;2i2) we infere xgééx; . Otherwise if
1
x§j>xp (11)
We suppose that (x?,...,x§_1,x§ ‘g+1,...,x )" is a solution

of (6) then

14 ()0, (1), O A1) 21 (p), o (pe1) °,(s)
pr x A ...+xp_1A +ApApA +xp+1 A oot X A

rom {(11) we know
T,(p)__o, (1) <0 A (P=1) 1, (p) o (p+1) o,(s)
X_A —ATA +...fxp_1A +pr +xp+1A +...+KSA

0 0 1 o~\T ., .
Thus (x;,...,x s X ,xo ,...,:{S)l is also a solution of

(6) . Its p—th coordinate contradicts the given of xz.
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. (p)

A A(p)

v)Futher from x is not standard we know x

1 2.
D p*
2.1
D

rU_x

pr<p). Thus Xp&\: . We construct the second cyclic equation

(,),.."éP');&;A(p),A(p+1)’. L (3)

of A .oy and so on and 30
(p)

forth. Since A has only mxn«t elements we discussed

finite times su.h as Kp times and obtain a descending Ssequence-

1 Kp —
x2,... x*  where X7V =x*r
2 b D

“p'p
cubic matrix of L(A(1) ...,A(p 1), XK°A(P) (P+1) ceesA (S)) .

y
. Here XKPA(p/ is a standard

From 1ii) we know that L(A(1),...,A(p_1) ~;PA( p) (p+1),...,

A(s))==L(A(1),...,A(S)) and x;PA(p) is a standard cubic
matrix of W . ‘

vi) A(1),...,A(S) can be changed into XT‘A(1),...,ngA(S)
where prA(p) (r=1,...,3) are a standard cubic matrix of ¥ and

W=L(x!" (1),...,ngA(s))
This theorem is proved.

Definition 8.2 The number of fuzzy cubic matrices conta-

ined in the standard basis of a finite generating subspace of W

of Vanxt is called the dimension of W, we write dim(w).

Proposition 8.2 For fuzzy cubic matrix A there are dim(R(A))

=€ (A); dim(CUD)=f7(A)‘ dim(S(A))=(g(A)-

generating subspa W of me o If there is a cubic matrix

group“B(1),...,B(p) (p#s) of W such that A(]) Z,B(AJ (=1,
- A—'
«.«33) then there i35 some B(l) (1<i<p) in the cubic matrix

- \ -
group such that plil=p(d),

Theorem 8.3 There is only a standard basis in & finite gene~

rati subspace of .
ng P * menxt
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