ON FREQUENCY DIAGRAMS WITH UNPRECISELY DEFINED CLASSES

Krzysztof PIASECKI

Department of Mathematics, Academy of Economy, ul. Marchlewskiego 146/150, 60-967 Poznań, Poland.

Let us look into the classical problem of investigation of distribution of characteristic in the general population $X=\{x\}$. The variation domain of characteristic $\Omega=\{\omega\}$ is interpretated as a set of elementary events and it can be divided into finite or infinite number classes A_n . The classes A_n are mutually disjoint subsets in Ω satisfying additionally the condition

$$\mathfrak{L} = \mathsf{U}_{\mathsf{n}} \left\{ \mathsf{A}_{\mathsf{n}} \right\} . \tag{1}$$

On the other side, the general population is representated by the sample $\{x_k\}$ \subset X given as the finite series of primary samples. Then the observation function $f\colon X\to \Omega$ assigns the observation ω_k to each primary sample x_k i.e. ω_k = = = $f(x_k)$. For this case the empirical frequency f_n of class A_n is defined as follows

$$f_n = \operatorname{card} \{x_k : \omega_k \in A_n\}$$
 (2)

for all nein . For this case, as we know, we have

$$\sum_{n} f_{n} = m_{x} , \qquad (3)$$

where symbol m denotes a sample size.

Finally, the empirical frequences f_n explicitly defines a probability

$$P(A) = \frac{\sum_{n} f_{n}}{m_{y}} \tag{4}$$

for each random event described by

$$A = \bigcup_{n} \{A_{n}\}, \qquad (5)$$

 $\{A_n,\}$ is any subsequence of $\{A_n\}$.

Very often the variation domain of characteristic is d vided which are unprecisely defined. For example, into classes An the variation domain of price of fixed consumer goods can be divided into two parts: "low prices" and "high prices". Then each An is represented by such fuzzy subset that the sequence $\{\mu_A\}$ is a fuzzy complete partition of Ω . (see [4]). So, the sequence $\{\mu_A\}$ has the following properties:

An are pairwise W-separated [2], i.e. - the fuzzy subsets for each pair (i,j) such that i j, we have

$$\mu_{A_{\alpha}} \leqslant 1 - \mu_{A_{\alpha}} \tag{6}$$

 $\mu_{A_{1}} \leqslant 1 - \mu_{A_{1}}$ - the fuzzy subset $\sup_{n} \{\mu_{A_{n}}\}$ is a W-universum [2] i.e.

$$\sup_{n} \left\{ \mu_{A_n} \right\} / \left[\frac{1}{2} \right]_{\Omega}$$
 (7)

where $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} : \Omega \rightarrow \{\frac{1}{2}\}$. We additionally assume about used $\{\mu_{A_n}\}$ that for each positive integer complete partition there exists such characteristic $\omega \in \Omega$

$$\mu_{A_n}(\omega) > \frac{1}{2}$$
 (8)

From practical view-point the above assumption is not unreasonable demand because it says that each class An cannot be represented by W-empty fuzzy subset (see [2]).

In agreement with (2), the empirical frequence \tilde{f}_n of class is given, for this case, by the formula

$$\widetilde{\mathbf{f}}_{n} = \sum_{k=1}^{m_{\mathbf{x}}} \mu_{\mathbf{A}}(\boldsymbol{\omega}_{k}) \tag{9}$$

Note that, in general, the empirical frequences \widetilde{f}_n do not sa-

tisfy the condition (3).

Let us consider now a family G_A defined as follows $G_A = \{\mu : \mu \in \mathbb{F}(\Omega_k), \exists \mathbb{K} \subset \mathbb{N}_A : \sup_{k \in \mathbb{K}} \{\mu_{A_k}\} \leqslant \mu \leqslant \{1 - \sup_{k \in \mathbb{N}_A \setminus \mathbb{K}} \{\mu_{A_k}\}\}$ and $\mu \land (1 - \sup_{k \in \mathbb{K}} \{\mu_{A_k}\}) \leqslant \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega_k}, (10)$

where the symbol W_{A} denotes the set of indexes of all classes A_{n} .

Since $\{\mu_A\}_{n\in\mathbb{N}_A}\subset \mathcal{T}_A$, the family \mathcal{T}_A is not empty. Moreover, the family can be interpreted as family of some unprecisely defined parts of variation domain of characteristic. In general, the family \mathcal{T}_A does not contain precisely defined classes of partition. Moreover, then we have:

Lemma 1: If $\mu \in \mathcal{G}_A$ then there exists the unique subset, $\mathbb{M}(\mu)$ say, of \mathbb{N}_A such that

$$\sup_{k \in \mathbb{M}(\mu)} \left\{ \mu_{A_k} \right\} \leqslant \mu \qquad , \tag{11}$$

$$\mu \wedge (1 - \sup_{k \in \mathbb{M}(\mu)} \{\mu_{A_k}\}) \leqslant \begin{bmatrix} \frac{1}{2} \end{bmatrix} \qquad (12)$$

Proof: Let μ be fixed fuzzy subset from \mathcal{T}_A . Then there exists subset M_1 in M_A such that the sequence $\{\mathcal{F}_A\}_{k\in M_1}$ satisfies the conditions (11) and (12) for μ . Suppose that there exists such subset M_2 in M_A that $M_2 \neq M_1$ and the sequence $\{\mathcal{F}_A\}_{k\in M_2}$ satisfies (11) and (12) for μ , too. Then we can find a positive integer 1 which belongs to $M_2 M_1$ or $M_1 M_2$. Assume now that $\lim_{k \to \infty} M_2$. The condition (8) implies that there exists such $\omega^* \in \Omega$ that $\mu_A_1(\omega^*) > \frac{1}{2}$. Thus, using (11), we get

$$\mu(\omega^*) > \frac{1}{2} \qquad (*)$$

On the other side, by (11) we obtain

$$\frac{1}{2} < \mu_{A_1}(\omega^*) \le 1 - \mu_{A_k}(\omega^*)$$

for each kell . This along with (*) implies

=
$$\mu(\omega^*) \wedge \inf_{k \in M_2} \{1 - \mu_{A}(\omega^*)\} \rangle \mu(\omega^*) \wedge \mu_{A}(\omega^*) \rangle \frac{1}{2}$$
.

Contradiction! So, $M_1 \subset M_2$ By analogous way, we get $M_2 \subset M_1$. Therefore, $M_1 = M_2 \cdot M_2$

Lemma 2: We have $\mathbb{M}(\mu \cup \nu) = \mathbb{M}(\mu) \cup \mathbb{M}(\nu)$ for any pair $(\mu, \nu) \in \mathbb{C}^2_A$.

Proof: For any fixed pair $(\mu, \nu) \in S_A^2$ we get:

= 1 -
$$\sup_{k \in (N_{A})} M(\mu) \{ \mu_{A_{k}} \} \wedge \sup_{k \in (N_{A})} M(\nu) \{ \mu_{A_{k}} \} \leq$$

= 1 -
$$\sup_{k \in (\mathbb{N}_{A})} (\mathbb{M}(\mu) \cup \mathbb{M}(\nu))) \{ \mu_{A_k} \}$$
.

and

$$\leq \left[\frac{1}{2} \right]_{\Omega}$$
.

The thesis is proved.

Lemma 3: We have $(M(1-\mu) = N_A) (M(\mu))$ for each $\mu \in \mathcal{I}_A$. Proof: If $1-\mu(\omega) > \frac{1}{2}$, for fixed $\omega \in \Omega$, then we have $\sup_{k \in M(\mu)} \{ \mu_A_k(\omega) \} \in \mu(\omega) < \frac{1}{2}.$

Thus, by (7), we get

$$\sup_{k \in (N_A) | M(\mu)} \{ \mu_{A_k}(\omega) \} > \frac{1}{2}$$
.

This fact proves that

$$(1-\mu) \wedge (1-\sup_{k \in IN_{\underline{A}} \mid M(\mu)} \{\mu_{A_{\underline{k}}}\}) \leqslant \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega}$$
.

The condition

 $\sup_{k \in \mathbb{N}_{A} \setminus \mathbb{M}(\mu)} \left\{ \mu_{A_{k}} \right\} \leq 1 - \mu \leq 1 - \sup_{k \in \mathbb{M}(\mu)} \left\{ \mu_{A_{k}} \right\}$ follows from

$$\sup_{k \in M(n)} \{ \mu_{A_k} \} \leq \mu \leq 1 - \sup_{k \in M_A \setminus M(\mu)} \{ \mu_{A_k} \}$$
 .

Lemma 4: We have $\mathbb{M}(\mu \vee (1-\mu)) = \mathbb{N}_A$ for each $\mu \in \mathcal{G}_A$. Proof: Immediatelly from the Lemmas 2 and 3.

Lemma 5: We have $(M(\mu) \cap M(\nu)) = 0$ for any pair of W-separated fuzzy subsets μ and ν from ∇_A .

Proof: Let μ and ν be W-separated fuzzy subsets from ∇_A . Assume that $\lim_{n \to \infty} (\mu) \cap M(\nu)$. Since (8), there exists such $\mu = 0$ that $\mu_A(\mu) \cap M(\nu) = 0$. Therefore, by (11) we obtain $\mu(\mu) > \frac{1}{2}$ and $\nu = 0$ Then the W-separatity between μ and $\nu = 0$ implies

 $\frac{1}{2} < \mu(\omega^*) \leqslant 1 - \gamma(\omega^*) < \frac{1}{2}$

Contradiction! The proof is ended.

Finally, we can show:

Theorem 1: The family \mathbf{G}_A is a soft fuzzy algebra (see [3]). Proof: Since $\phi \in \mathbb{N}_A$, $\mathbf{G}_A \in \mathbf{G}_A$. The Lemmas 2 and 3 show that \mathbf{G}_A is closed under union and complementation.

Assume now that $\begin{bmatrix} 1\\2\end{bmatrix}_{\mathfrak{N}} \in \mathfrak{G}_{A}$. Then there exists such $\mathbb{M} \subset \mathbb{N}_{A}$ that

$$\sup_{k \in \mathbb{M}} \{ \mu_{A_k} \} \leqslant \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega} \tag{*}$$

and

Using (8) and (*) we obtain $M=\emptyset$. Furthermore, the conditions (8) and (**) imply $M=N_A$. Contradiction! So, $\begin{bmatrix} 1\\2\end{bmatrix}_{\Omega} \notin G_A$.

Consider now any fuzzy P-measure p: $\sigma_A \rightarrow [0,1]$ on σ_A (see [3]). In accordance with the definition of fuzzy P-measure we have:

- for any
$$\mu \in G_A$$
, $p(\mu \vee (1-\mu))=1$; (13)

- if $\{\mu_n\}$ is finite or infinite sequence of pairwise W-separated fuzzy subsets from \mathfrak{F}_{Λ} then

$$p(\sup_{n} \{\mu_{n}\}) = \sum_{n} p(\mu_{n}) \qquad (14)$$

This measure will be interpreted as empirical distribution of characteristic. Since the characteristics are unprecisely grouped, this distribution is a distribution of probability of fuzzy events. Ph.Smets [7] says that probability of fuzzy event a can be related to the cordinality of fuzzy subset and a Therefore, we additionally assume that there exists such positive real number a that

$$p(\mu_{A_n}) = \alpha \cdot \tilde{f}_n \tag{15}$$

for each class A_n . Replacement cardinality by empirical frequence follows from (2) and (9).

Theorem 2: The mapping $p: \mathcal{S}_A \to [0,1]$, defined by the identity

$$P(\mu) = 0 + \frac{\sum_{k \in M(\mu)} \widetilde{f}_k}{\sum_{k \in N_A} \widehat{f}_k}$$
(16)

for each $\mu \in \mathcal{G}_A$, is the unique fuzzy P-measure on \mathcal{G}_A which satisfies (15).

Proof: The Lemma 1 proves that the mapping p, given by (16), is explicitly defined. Using the Lemmas 4 and 5 we can to show that the mapping p fulfils the properties (13) and (14). So, the identity (16) describes a well-defined fuzzy P-measure on \mathfrak{S}_A . Let $\widetilde{p}\colon \mathfrak{S}_A \to [0,1]$ be any fuzzy P-measure on \mathfrak{S}_A satisfying the condition (15). Taking into account (6), (7), (13) and (14) we obtain

$$1 = \widetilde{p}(\sup_{k \in \mathbb{N}_{A}} \{ \mu_{A_{k}} \} \vee (1 - \sup_{k \in \mathbb{N}_{A}} \{ \mu_{A_{k}} \})) = \widetilde{p}(\sup_{k \in \mathbb{N}_{A}} \{ \mu_{A_{k}} \}) =$$

$$= \sum_{k \in \mathbb{N}_{A}} p(\mu_{A_{k}}) = \alpha \sum_{k \in \mathbb{N}_{A}} \widetilde{f}_{k}.$$

Thus

$$p(\mu_{A_n}) = \frac{\widehat{f_n}}{\sum_{k \in \mathbb{N}_A} \widehat{f_k}} = p(\mu_{A_n})$$

Let μ be any fuzzy subset in $\mathbf{5}_A$. Note that $\{\mu_{A_k}\}_{k\in M(\mu)}$ is a fuzzy partition of μ (see [4]). Therefore, we have $\widetilde{p}(\mu) = \sum_{k\in M(\mu)} \widetilde{p}(\mu_{A_k}) = \sum_{k\in M(\mu)} p(\mu_{A_k}) = p(\mu)$. The uniqueness of p is proved.

We have seen that the empirical frequences explicitly define a distribution of characteristic which is a fuzzy P-measure. E.P.Kle-ment et.al. [1] have defined a fuzzy probability measure. Their definition is more general than the definition of fuzzy P-measure.

It is very easy to check that the mapping $m: \mathcal{G}_A \to [0,1]$, given by

$$m(\mu) = 0 + \frac{\sum_{l=1}^{m_{x}} \sup_{k \in \mathbb{N}_{A}} \{ \mu_{A_{k}}(\omega_{l}) \}}{\sum_{l=1}^{m_{x}} \sup_{k \in \mathbb{N}_{A}} \{ \mu_{A_{k}}(\omega_{l}) \}}$$
(17)

for each $\mu \in \mathcal{T}_A$, is a fuzzy probability measure on \mathcal{T}_A which satisfies the condition (15). Moreover, in general we have $p(\mu) \neq m(\mu)$. Só, if we assume that distribution of characteristic is a fuzzy probability measure then it cannot be explicitly defined by the empirical frequences. On the other side, the fuzzy P-measures are the unique fuzzy probability measures satisfying the Bayes Formula (see [5]). These facts are justifying for qualification a distribution of characteristic as fuzzy P-measure.

Finally, some extension of distribution of characteristic will be presented. We shall use the following mappings defined by

$$K(\mu) = \{\omega : \omega \in \Omega_1, \mu(\omega) > \frac{1}{2} \},$$
 $K^*(\mu) = \{\omega : \omega \in \Omega_1, \mu(\omega) = \frac{1}{2} \},$

$$\mathbf{L}(\mu) = K(\mu) \cup K^*(\mu)$$

for each $\mu \in F(\Omega)$. Using the above mappings, we define the next families:

$$K(\sigma_{A}) = \{B: B \in 2^{\Omega}, \exists \mu \in \sigma_{A}: K(\mu) \in B \in L(\mu)\},$$

$$K^{*}(\sigma_{A}) = \{B: B \in 2^{\Omega}, \exists \mu \in \sigma_{A}: B = K^{*}(\mu)\},$$

$$E(\sigma_{A}) = \{\mu: \mu \in E(\Omega), \exists (B,C) \in K^{2}(\sigma_{A}): B \in C \times X\},$$

$$\Re(\mu) = \{\mu: \mu \in E(\Omega), \exists (B,C) \in K^{2}(\sigma_{A}): B \in C \times X\},$$

$$\Re(\mu) = \{\mu: \mu \in E(\Omega), \exists (B,C) \in K^{2}(\sigma_{A}): B \in C \times X\},$$

Furthermore, let as define a such family $\mathbb{E}^*(\mathcal{T}_A)$ as the subfamily of $\mathbb{E}(\mathcal{T}_A)$ that for each $\{\mu_n\}\subset\mathbb{E}^*(\mathcal{T}_A)$ there exists $\mathbb{E}(\mathcal{T}_A)$ containing $\sup_{n}\{\mu_n\}$. The mapping $\mathbb{P}^*:\mathbb{K}(\mathcal{T}_A)\to \mathbb{E}(\mathcal{T}_A)$, given by the implication:

"if
$$K(\mu) \subset B \subset L(\mu)$$
 then $P^*(B) = p(\mu)$ " (19)

for each $B \in K(\mathcal{T}_A)$, is explicitly given usual probability measure [6]. Using all above notions we can to present the following thesies:

Theorem 3: The mapping \overline{p} : $E^*(S_A) \rightarrow [0,1]$, defined by (19) and

$$\overline{p}(\mu) = P^*(K(\mu)) \tag{20}$$

for each $\mu \in \mathbb{E}^*(\mathcal{T}_A)$, is the unique extension of p or \mathcal{T}_A to $\mathbb{E}^*(\mathcal{T}_A)$ which is a fuzzy P-measure [6].

Theorem 4: The mapping $\phi: \mathbb{E}^*(\sigma_A) \to [0,1]$, defined by (19) and

$$\widehat{\mathbf{p}}(\mu) = \mathbf{P}^*(\mathbf{L}(\mu)) \tag{21}$$

for each $\mu \in \mathbb{E}^*(\mathcal{S}_A)$, is the unique extension of p on \mathcal{S}_A to $\mathbb{E}^*(\mathcal{S}_A)$ which is a fuzzy P-measure [6].

Theorem 5: The mapping \overline{p} : $\mathbb{E}(S_A) \to [0,1]$, defined by (19) and (20) for each $\mu \in \mathbb{E}(S_A)$ is a extension of p on S_A to $\mathbb{E}(S_A)$ which is a fuzzy probability measure [6].

Theorem 6: The mapping $\mathfrak{P}: \mathbb{E}(\mathfrak{T}_A) \to [0,1]$, defined (19) and (21) for each $\mathfrak{P} \in \mathbb{E}(\mathfrak{T}_A)$, is a extension of \mathfrak{P} on \mathfrak{T}_A to $\mathfrak{E}(\mathfrak{T}_A)$ which is a fuzzy probability measure [6].

Note that mappings \overline{p} and \widehat{p} describe a different fuzzy probability measures on $\mathbb{E}(S_A)$. Moreover, then we have:

Theorem 7: If the fuzzy probability measure $m: \mathbb{E}(\widetilde{S}_{A}) \to [0,1]$ satisfies $m(\mu) = \widetilde{p}(\mu) = \widehat{p}(\mu)$ for each $\mu \in \mathbb{E}^{+}(\widetilde{S}_{A})$ then it

fulfils $\overline{p}(\mu) \leqslant m(\mu) \leqslant \overline{p}(\mu)$ for any $\mu \in E(\mathcal{G}_A)$ [6]. We observe that $\mathcal{A} \subset E(\mathcal{G}_A)$, where \mathcal{A} is the family of all subsets in Ω defined by (5), but in general the family $E^*(\mathcal{G}_A)$ does not contain the family \mathcal{A} . As we know, the family \mathcal{A} is a family of precisely defined classes dividing the variation domain of characteristic. In agreement with the Theorems 5,6,7, the distribution of characteristic on \mathcal{A} in unprecisely defined. It is immediate consequence of primary unprecise qualification of classes. Also the Bayes method of inference cannot be confined to \mathcal{A} . I suppose that investigation of distribution of characteristic can be limited to $E^*(\mathcal{F}_A)$.

References:

- [1] E.P.Klement, R.Lowen, W.Schwihla, Fuzzy Probability Measures, Fuzzy Sets and Systems 5 (1981), 21-30.
- [2] K.Piasecki, New Concept of Separated Fuzzy Subsets, Proc.
 the Polish Symposium on Interval and Fuzzy Mathematics (1985)
 193-195.
- [3] K.Piasecki, Probability of Fuzzy Events Defined as Denume-rable Additivity Measure, Fuzzy Sets and Systems 17 (1985), 271-284.
- [4] K.Piasecki, Fuzzy Partition of Sets, BUSEFAL 25 (1986), 52-60.
- [5] K.Piasecki, On the Bayes Formula for Fuzzy probability Measures, Short Communication, Fuzzy Sets and Systems 18 (1986), 183-185.
- [6] K.Piasecki, Extension of Fuzzy P-measure Generated by Usual Measure, preparing paper.
- [7] Ph.Smets, Probability of Fuzzy Events: an Axiomatic Approach, Fuzzy Sets and Systems 7 (1982), 153-164