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Let us look into the classical problem of investigation of dise-
tribution of characteristic in the general population X_::{x} .
The variation domain of characteristic 82 ={w} is interpreta-
ted as a set of elementary events and it can be divided into fim
nite or infinite number classes A, o The classes An are Mu=
tually disjoint subsets in ‘_QJ satiéfying addn:.tionally the
condition

.S?-::Un{An} (1)

Opn the other side, the general population is representated by
the sample {xk}c X given as the finite series of primary
samples. Then the observation function f: X—>SL assigns the

observation LW to each pfimary' sample xk‘ leCoe D =

=‘£‘(xk) « For this case the empirical frequency fn of class
An is defined as follows
f, = ;:ard{x 1 wye An} - (2?

for all nelN . For this case, as we know, we have

2, Th=mye " (3)

where symbol m denotes a sample size,

Finally, the empirical frequences fn explicitly defines a
probability |
57 f
p(a) = =28 (2)

“x
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for each random event described by

o=V _dat) , (5)
where {An.} is any subsequence of {An}. °

Very often the variation domain of characteristic is d vided

into classes A which are unprecisely defiﬁed‘. For example,
the variation domain of price of fixed consumer goods can be di=
vided into two parts: "low prices" and "high prices". Then each
class A, 1s represented by such fuzzy subset Py € F(52)
that the sequence { ad A} is a fuzzy complete par’t;igion of
SL ('see [4:[) . So, thensequence_ &‘rkA:)] has the following
properties: ) ‘
- the fuzzy subsets )kAn are bairwise W—separated ('_'2:] s LleCa
- for each pair (i,J) such that i$j , we have

o, € 7 - Vay 'v 6y
- the fuzzy subset sup {}LAR} is a W~universum (2] 1i.e.

sup, {_erAn}) [[ % ]R | ,(7)

where [ é ﬂq‘:uﬂr" {%} « We additionally assume about used
b}

coniple’ce vartition {V’A‘} that for each positive integer n
n

there exists such characteristic wreSL that

)‘“An(w) Y % (8)

From practical view=point the above assumption is not unreasonab-
le demand because it says that each class An cannot be repre-
sented by W;-empty fuzzy subset | see Czj) °

In agreement with { 2),' the empirical fregquence £ of class

n
An is given, for this case, by the formmula
~ - - ' boa - .
Ty = Lk Al | -9
. ~s
Note that, in general, the empirical frequences fn do not sa=-
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tisfy the condition (3).
Iet us consider now a family GA defined as follows
<1 - supkeWA}&{JLY'A;]
‘ N r 1 \
and AT = supy i {FAk:3< 1z ]LQ},{’ (o)

where the symbol N, denotes the set of indexes of all classes
Ao o ;

Since {y-A:; newC Sy » the family G, s not empty. Lore-
over, the family can be interpreted as family of some unprecise-
ly defined parts of variation domain of characteristice. In gene=
ral, the family GA does not contain precisely defined claséeg

of partition. Moreover, then we have:

Lemma 1: If p- € G, then there exists the unique subset,

RI(p) say, of N, such that
SUPk e Mi(p) &FAQ}Q P y (11)

er/\ 1 - fsup]{{em(tq {)LAK)]) gﬁ%ﬂ . (12)

Proof: Let be be fixed fuzzy subset from &, . Then there .
exists subset IM,‘ in lICIA such that the sequence {)*Ak}ke i,

satisfies the conditions (11) and (12) for P Suppose that the-
re exists such subset I, in N,  that MM, and the se-
quence {VAl}kemﬁ satisfies (11) and (12) for s too.
Then we can find a positive integer 1l which belongs to mz\lm,]
or WL\M, . Assume now that le WL\UL, o The condition (8 ) implies
that there exists such w¥e¢SL that b Al(u,*)‘> % . Thus, using
(11), we get |

L D I (%)
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On the other side, by (11) we obtain

1 . v X

2< y-‘-Al(w*‘)S 1 = r-LAé\..f*)
for each k&l o This along with (%) implies
PO A= s gy § e Ll =

. : ( , . ' - 1 :

i A R e I S N SN D B
Coptradiction! So, . lM,lc L, « By analogous way, we get lMZC BL, o
Therefore, M=, o

Iemma 2: We have M (p.uv) = M(y)u () for any pair (F.,V)c-.
2 Gi .

Proof: For any fixed pair (l\k,\?) € SE we get:

PV "_7/‘3“Pkem(mi\f’4 Akl,v SWPre M(v) gF‘AQ] =

= SUpy, M () v ifgug,){ P Ak't] ’

pv 9L - supy mA\wz(Mg}‘Ak‘])V (1 - supy, N\ B () {r Akll) =
=71 = 8Pk, B gy }‘Ak)) A SPre MAM(S) {m Akl(é

€1 - Supke(ﬂVA\M(p))n\ﬁ\IA\M(\?))‘S\}* Ak]] =

=1- B P el (I () v W(v))) L A;] °

" and
(ev¥)nla- SUPke Mp)v M) 1P Ak’r) =
=(pv¥) A (1= sup,, M (o) S Ak]\\" BUPL ¢ mr(v) § I AL}\) =
= (mve)an = B¢ ) \}LA;])/\ (1 = supe gy {1 Akl])é

S RN PR S PRI AVRZACE L SPRVHER SN IS

‘[%ﬂa'

The thesis is proved. @l
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Lemma 3: We have (M(1=p) =N\ W)  for each j|efR, o
Proof: If 1= f"("‘)>%  .for fixed “s(:Sl y then we have

SUPye w(p) A M (“')]1 < }*‘“') <3
Thus, by (7), we get
P e 01, \M(p) i Aé“ﬂ) Vs

This fact proves that

(1= p)A (1 = sup m\tM(M f‘A l[ :ﬂ.SL
The condition

SUPLE IN )\ 0 () §}~Ak IR TR N

follows from

SUPY ¢ I () { V‘AI_{}S ps- S Pke I\ I () S\P'Akl; -3

Lemma‘ 4: We have IM(p.v(’l-p_]) =[N, for each rLeC{A °
Proof: Immediatelly from the Lemmas 2 and %. R

Lemmsa 5: We have KMW)(\ vy =0 for any pair of Weseparated
fuzzy subsets W and ¥ from &, o ~
Proof: Let V- and ;D be Ww-separated fuzzy subsets from
G’A o Assume that 1€ M(m)n W(~) o Since (8), there exists
such «w¥e¢ &L that |\~A1(w*)7 % o Therefore, by (11) we ob=-
tain \uu:*»% and 9 (w*)D4 + Then the W-separatiby
between p- and V¥

A< oMK =P (M) < 2
Cont\radiction! The proof is ended. B

implies

Finally, we can show:
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Theorem 1: The family 6, is a soft fuzzy algebra (see ((3]) .
Proof: Since ¢CINA ’ G_neGA e The Lemmgs 2 and 3 show that
G’A is closed under union and complementation.
Assume now that ﬂ: % ﬂ & SA « Then there exists such ‘MC"NA
AY2
that )

STy ¢ 1 {V‘Ak}\< [ 3 }]R %)

and . :
1 B - (% %)
1 - sup {
[ Z o€ ke N\ P’Ak}
Using (8) and («) we obtain M=¢f . Furthermore, the conditions
(8) and‘ (x») imply QM= M, » Contradiction! So, ”: % :B.S?} Gy o0

Consider now any fuzzy P-measure p: SA‘* [0,7] on G,
(see [3]) o In acéordance with the definition of fuzzy P-measure
we have:

- for any peG, , p(ywk’l-—y))z'l ; 03)
- if {!wn} is finite or infinite sequence of pairwise W-sepa-
rated fuzzy subsets from B’A then

p(owy {)p)) = T plpy) | (14)
This measure will be interpret@d as empirical distribution of
characteristic. Since the characteristics are unprecisely grouped,
this distribution is a distribution of probability of fuzzy events,
Ph.Smets [7]] says that probability of fuzzy event i can be
related to the cordinality of fuzzy subset ol Therefore, we

additionally assume that there exists such positive real number
/

o tThat : BN
pk'&.An) = oL" ‘fn (’]5)
for each class An « Replacement cardinality by empirical frequ-

ence follows from (2) and (9 e
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Theorem 2: The mapping  p: G ,— [0,1] , defined by the identi=
. .

T, |

P(p) =0
Zke W, T

k

for each - rxe GA s 1s the unique fuzzy P-measure on (S’A which
satisfiés (15) |

Proof: The Lemma 1 proves that the mapping ©p , given by (1e),

is explicitly defined. Using the Lemmas 4 and 5 we can to show
that the mapping p fulfils the properties {13) and \14): So,
the ide‘ntity (16) describes a well-defined fuzzy P=measure on & A®
let 7Dt S,— [0,1] be any fuzzy P-measure on G, satisfying
the condition (15). Taking into account (6), (7), (13) and (14) we

obtain
1= P(S“Pkeuv {P‘LA Y (1 - supy e, {FA 1)) = Bloupy, mﬁ Y‘A;)) =
=Zke[NA P“’"Ak) = o zkelNA ?k .
Thus ’
f~n

Plig ) = S T - Plpg) o

Let r\, be any fuzzy subset in 6, o Note that {IPLA\kc-‘\M(p.)
is a fuzzy partition of F’ ( see Cl}-:]) + Therefore, we have

Blw) = 2pcugey Plra) = Dcuyy, Plpg) =2(p)

The uniqueness of p is proved. @

We have seen that the empirical frequences explicitly define a
distribution of characteristic which is a fuzzy P-measure, E.,P.Kle-
ment et.al, C’I] have defined a fuzzy probability measure. iheir

definition is more general than the definition of fuzzy P-mecasuve
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It is very easy to check that the mapping m: & 2= [0,1] 5 si-
ven by

<o, R
L3-q 5%e ) { }‘Ak‘“lﬂl

m (P\) =0 +
231 SWye v, {P“'Ak(wl)}

for each p- [ GA y is a fuzzy probability measure on GA which

(17)

satisfies the condition (15). Moreover; in ééneral we have p (}L) #
$m(p). o 80, if we assume that distribution of characteristic is a
fuzzy probability measure‘then it cannot be explicitly defined by
the empirical frequences. On the other side, the fuzzy P-measures
are the unique fuzzy probability measures satisfying the Bayes
Formula (see [:5]) o These facts are justifying for qualification
a distribution of characteristic as fuzzy P-measure.

Finally, some extension of distribution of characteristic will

be presented. We shall use the following mappings defined by
K(p) ={w:u.>e..‘f?.. ’ )\&(w)> %} y
A ) 1 -
K*(r) = {ue: QAJC-,SL ’ r\-(v_)) = 2} ’

Lp) =E(pv K*(R)
for each (u,(;-,m‘(SL) o Using the above mappings, we define the

next families:
®(6,) = {B: Be2™ , e 6y KpleBe LWy ,
K¥(5,) = {B: Be 2% | 3 & §ut B = K“‘(M} )
B(S5,) = {p:pe FLL),3 (B,0)eR(§ ) BEC ¥
¥ B=E(pW X C=L{W} o
Furthermore, let as define & such family lE‘(G'A) as the subfa=

fl

‘mily of E({,) that for each {hn‘]@"_ E*(S,) there exists
Ae[K*(6,) containing supn{}a n} o The mapping P*: K (5 ,)-
~[0,1] , given by the implication:
"if KW« BeLiw  then PYB) = p(p) " (19)
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for each Bc!Kt‘S'A) s 1s explicitly given usual probability mea-
sure EG] o Using all above notions we can to present the following

thesies:

Theorem 3: The mapping D3 EB*(5s,)—> {0,1] , defined by U19)

and

P (R) = PYHE (W) | (20)
for each 1 ¢E*(6,) , is the unique extension of p on
5, to B¥(5,) which is a fuzzy P-measure [6] .

Theorem 4: The mapping P: B¥(5,)~> {0,1] , defined by (19)
an/d

T () = PHI(W) | 1)
for each € (E*('S'A) » is the unique extension of p on

GA to lE*’(SA) which is a fuzzy P-measure fe] -

Theorem 5: The mapping Dp: E(s,) = [0,1]] , defined by (19) and.
(20) for each b €E(S,) is a extension of p on G, to
EXE,) which is a fuzzy pr?bability neasure [6]

Theorem 6: The mapping P {E(!S‘A)é [0,1] , defined (19) and
(21) for each W E€E(S,) , is a extension of p on 5 ER)
which is a fuzzy probability measure | 6] e

Note that mappings P and T describe a different fuzzy

probability_ measures on lE(GA) . Moreo;rer, then we have:

Theorem 7: If the fuzzy probability measure m: IE(S,)~> [0,1]
satisfies m(p) =p (p) =B (M) for each QW €E¥(G,) then it
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fulfils DM & m(pW) € T (M for any p ¢ E(S,) el .

We observe that ¢ cE(G y where G  is the family of

4)
all subsets in &L defined by (5), but in general the family
E*(5,) does not contain the family & . As we know, the fami-
ly St is a family of precisely defined classes dividing the
variation domain of characteristic. In agreement with the Theo=
rems 5,6,7, the distribution of characteristic on & in unpre=-
cisely defined. It is immediate consequence of primary unprecise
qualification éf clesses. Also the Bayes method of inference cane-

not be confiped to JT& ., I suppose that investigation of distrie

bution of characteristic can be limited to E*(5,) .
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