LIMITS AND CONTINUITY OF THE FUZZY FUNCTIONS

Marian Matłoka

Institute of Economical Cybernetics, Department of Mathematics, Economic Academy of Poznań, ul. Marchlewskiego 146/150, 60-967 Poznań, Poland

O. Introduction. In this paper the limit and continuity of a fuzzy function is presented. A fuzzy function is defined as a mapping from a set of fuzzy numbers to a set of fuzzy numbers. If domain of fuzzy function is a set of real numbers then such fuzzy function we will called the fuzzy mapping.

A first Section is devoted to the limit of a fuzzy function. First the limit of a fuzzy function is defined and next the limit theorems are formulated and proved. In the second Section a continuous fuzzy function is defined and the theorems of continuous fuzzy functions are proved.

1. Limit of a fuzzy function.

Let D and V denote two sets of fuzzy numbers.

Definition 1.1. A fuzzy function F from a set D to a set V is a mapping from D to V.

In the other words, to each fuzzy number $X \in D$ corresponds a fuzzy number F(X) from V.

Definition 1.2. The fuzzy number L is said to be the limit of the fuzzy function F at X_0 if corresponding to each number $\mathcal{E} > 0$, there is a number r > 0, such that whenever $X \in S(X_0, r)$ then $D(F(X), L) < \mathcal{E}$, where $S(X_0, r) = \{ X : D(X_0, X) < r \text{ and } X \neq X_0 \}$ and D denotes a distance between two fuzzy numbers F(X) and L (see [1]

The notations

$$\lim_{X \to X_0} F = L \quad \text{and} \quad \lim_{X \to X_0} F(X) = L$$

are used to denote that L is the limit of F at X_0 .

So,

(*)
$$\lim_{X_0} F(X) = L \text{ if and only if } \bigwedge_{\varepsilon>0} \bigvee_{r>0} \bigwedge_{X\in S(X_0,r)} D(F(X),L) < \varepsilon$$

Definition 1.3. The fuzzy number L is said to be the limit of the fuzzy function F at X_0 if for any sequence $\{X_n\}$ of fuzzy numbers such that $X_n \neq X_0$

$$\lim_{n\to\infty} X_n = X_0 \implies \lim_{n\to\infty} F(X_n) = L.$$

Theorem 1.4. The definitions 1.2 and 1.3 of the limit of the fuzzy function are equiponderant.

Proof. Let for any $\mathcal{E} > 0$ there exists r > 0 such that (#) holds and let $\lim_{n \to \infty} X_n = X_0$, $X_n \neq X_0$. Because X_0 is the limit of $\{X_n\}$, so there exists a number N such that for any $n > \mathbb{N}$, $X_n \in K(X_0, r)$, (see [1]). From (#) implies that $\mathbb{D}(F(X), \mathbb{L}) < \mathcal{E}$. Hence $\lim_{n \to \infty} F(X_n) = \mathbb{L}$.

Now, let us assume that (##) holds and for some $\ell=\ell_0>0$ does not exist r>0 such that (#) holds. Then for each r = 1/n , n=1,2,... there exists a fuzzy number X_n such that $X_n \in K(X_0,1/n)$ and

 $X_n \in S(X_0, 1/n)$ and $D(F(X_n), L) \gtrsim \mathcal{E}_0$. This means that $X_n \neq X_0$, $\lim_{n \to \infty} X_n = X_0$ and L is not the limit of the sequence $\{F(X_n)\}$ in contradiction with (##). Hence (#) holds. The proof is complete.

Theorem 1.2. If $\lim_{X\to X_0} F(X) = L_1$ and $\lim_{X\to X_0} F(X) = L_2$ then $L_1 = L_2$

Proof. Let us assume that $\lim X_n = X_0$, $\lim X_n = X_0$ and $\lim F(X_n) = L_1$, $\lim F(X_n) = L_2 \neq L_1$. Then the sequence $\{Y_n\}$, where $Y_{2n-1} = X_n$, $Y_{2n} = X_n$ converges to X_0 but the sequence $\{F(Y_n)\}$ diverges - a contradiction.

Definition 1.4. The fuzzy number L is said to be the left-hand (right-hand) limit of the fuzzy function F at X_0 if for any sequence $\{X_n\}$ of fuzzy numbers such that $X_n < X_0$ $(X_n > X_0)$ (see [1])

$$\lim_{n\to\infty} X_n = X_0 \implies \lim_{n\to\infty} F(X_n) = L.$$

The notations

$$\lim_{X \to 0} F = L \qquad \text{and} \qquad \lim_{X \to X_{\overline{O}}} F(X) = L$$

and

$$\lim_{\substack{X \to X \\ 0}} F = L \qquad \text{and} \qquad \lim_{\substack{X \to X \\ 0}} F(X) = L$$

are used to denote that L is the left-hand or right-hand limit of F at \mathbf{X}_{O} respectively.

We may give the another but equiponderant definition of the lefthand and right-hand limit of the fuzzy function.

Definition 1.5. The fuzzy number L is said to be the left-hand (right-hand) limit of the fuzzy function F at X_0 if corresponding to each number $\epsilon > 0$, there is a number r > 0 such that whenever

$$X \in S^{-}(X_{0},r)$$
 ($X \in S^{+}(X_{0},r)$) then $D(F(X),L) < \mathcal{E}$.

So,

$$\lim_{X\to X_0^-} F(X) = L \quad \text{if and only if} \quad \bigwedge_{\epsilon>0} \bigvee_{r>0} \bigwedge_{X\in S^-(X_0,r)} D(F(X),L)<\epsilon \quad ,$$

and

$$\lim_{X \to X_0^+} F(X) = L \text{ if and only if } \bigwedge_{\varepsilon > 0} \bigvee_{r > 0} \bigwedge_{x \in S^+(X_0,r)} D(F(X),L) < \varepsilon .$$

Theorem 1.3. The fuzzy number L is the limit of the fuzzy function F at $\rm X_{O}$ if and only if there exist the right-hand and left-hand limits of F at $\rm X_{O}$ and are equal.

We omit the proof of this Theorem since it is the same as the proof of the corresponding theorem in classical analysis.

Theorem 1.4. If F and G are fuzzy functions and $\lim_{X_0} F = L_1$ and $\lim_{X_0} G = L_2$ then

$$\lim_{X_{O}} (F + G) , \lim_{X_{O}} (F - G) , \lim_{X_{O}} (F \cdot G) , \lim_{X_{O}} (F / G)$$

exist (for F/G under the assumtions $0 \notin \text{supp } L_2$ and $0 \notin \text{supp } G(X)$ for any X) and

This Theorem implies from the Definition 1.3 and from the correspoding theorem for the sequences of fuzzy numbers (see [1]).

Corollary. If $\lim_{X_0} F = I$, then $\lim_{X_0} cF = cL$, where c is a real number.

Theorem 1.5. If $\lim_{X_0} F = L$ and $\lim_{Y_0} G = X_0$ and if there exists

a number r>0 such that $G(Y) \neq X_0$ whenever $0 < D(Y,Y_0) < r$, then $\lim_{Y \to Y_0} (F \circ G) = L$.

Proof. Since $\lim_{X \to 0} F = L$, corresponding to any number $\xi > 0$ there

is a number ? > 0 such that

$$D(F(X),L) < \varepsilon \qquad (0 < D(X,X_0) < ?).$$

We may replace this inequality by

$$D(F(G(Y)),L) < \varepsilon \qquad (0 < D(G(Y),X_0) < ?)$$
 (#)

Since $\lim_{Y_0} G = X_0$, there is a number $r_1 > 0$ such that

$$\mathbb{D}(\mathbb{G}(\mathbb{Y}),\mathbb{X}_{0}) < ? \qquad (0 < \mathbb{D}(\mathbb{Y},\mathbb{Y}_{0}) < \mathbb{r}_{1}).$$

Since by hypothesis $D(G(Y),X_0) > 0$ whenever $0 < D(Y,Y_0) < r$, if we let \overline{r} be the smaller of the two numbers r_1 and r, then we have

$$0 < D(G(Y), X_0) < ? \qquad (0 < D(Y, Y_0) < \overline{r})$$
(EX.)

Combining (x) and (xx), we have

$$D(F(G(Y)),L) < \varepsilon$$
 (0 < $D(Y,Y_0) < \overline{r}$).

That is,

$$\lim_{Y_{O}} (F \circ G) = \lim_{Y_{O}} F(G(Y)) = L.$$

2. Continuity of a fuzzy function.

Definition 2.1. The fuzzy function F is continuous at the fuzzy number X_0 if for each $\xi>0$ there exists a number r>0 such that $D(F(X),F(X_0))<\xi \qquad \text{whenever} \quad D(X,X_0)< r.$

We may give the another but equiponderant definition of the continuity of the fuzzy function.

Definition 2.2. The fuzzy function F is continuous at the fuzzy number X_0 if for any sequence $\{X_n\}$ of fuzzy numbers such that $\lim_{n\to\infty} X_n = X_0 \text{ we have } \lim_{n\to\infty} F(X_n) = F(X_0).$

The above definitions are equivalent to : The fuzzy function F is continuous at the fuzzy number X_O if $\lim_{X_O} F = F(X_O)$.

Theorem 2.1. If the fuzzy functions F and G are continuous at X_0 , then F + G, F - G, and F·G are continuous at X_0 , and F/G is continuous at X_0 provided $0 \not\in \text{supp } G(X_0)$.

Proof. This theorem implies from the Theorem 1.4.

Theorem 2.2. If F is continuous at X_0 , $\lim_{Y_0} G = X_0$, then

 $\lim_{Y_{O}} (F \circ G) = F(X_{O}).$

Proof. Since F is continuous at X_0 , corresponding to any number $\epsilon > 0$ there is a number r > 0 such that

$$D(F(X),F(X_{O})) < \mathcal{E}$$
 (#)

whenever $D(X,X_0) < r$. Also since $\lim_{Y_0} G = X_0$, corresponding to r > 0

there is a number $r_1 > 0$ such that

$$D(G(Y),X_{O}) < r$$
 (HH)

whenever $0 < D(Y,Y_0) < r_1$. How, if $0 < D(Y,Y_0) < r_1$ then by (##) $D(G(Y),X_0) < r$. Moreover by (#) $D(F(G(Y)),F(X_0)) < \xi$.

Thus we have shown that corresponding to any number $\varepsilon > 0$ there is a number r > 0 such that

$$D((F \circ G)(Y), F(X_O)) < \varepsilon$$

whenever $0 < D(Y,Y_0) < r$.

That is, $\lim_{Y_0} (F \circ G) = F(X_0)$.

Corollary. If G is continuous at \mathbf{Y}_0 and F is continuous at $\mathbf{G}(\mathbf{Y}_0)$, then FoG is continuous at \mathbf{Y}_0 .

References

[1] Marian Matłoka, Sequences of fuzzy numbers, BUSEFAL (in print).