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0. Introduction. In this paper the limit and continuity of a
fuzzy function is presented. A fuzzy function is defined as a map-
ping from a set of fuzzy numbers to a set of fuzzy numbers. If do-
main of fuzzy function is a set of real numbers then such fuzzy
function we will called the fuzzy mapping.

A first Section 1s devoted to the limit of a fuzzy function; First
the 1limit of a fuzzy function is defined and next the limit theorems
are formulated and proved. In the second Section a continuous fuzzy
function is defined and the theorems of continuous fuzzy functions

are proved.

1., Limit of a fuzzy function.

Tet D and V denote two sets of fuzzy numbers.
Definition 1.1. A fuzzy function I from a set D to a set V is

a mapping from D to V.
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In the other words, to each fuzzy number X € D corresponds a

fuzzy number F(X) from V.

Definition 1.2. The fuzzy number L is said to be the limit of
the fuzzy function F at XO if corresponding to each number & > O,
there is a nuiber ri>0; such that whenever Xé.S(XO,r) then
D(F(X),L)< & , where S(¥y,r) ={ X : D(X,,X)<r and X # Xo 3

and D denotes a distance between two fuzzy numbers F(X) and L (see (1]

The notations

lim F = L and lim TF(X) = T

X, | XX,

are used to denote that L is the limit of T at XO.

S0,

(%)  lim F(X) = I if and omly if NV N\ D(F(X),L )<t
X, £E>0 r>0 Xe s(}co,r)

Definition 1.3. The fuzzy number Lbis said to be the limit of
the fugzzy function T at XO if for any seguence {Xn} of fuzzy numbers
such that Xn # XO

(#2) 1im X = X5 = 1lim PF(X ) =1 .

Do - o°

Theorem 1.4, The definitions 1.2 and 1.3 of the limit of the

fuzzy function are equivonderant,

Proof. Let for any €7 O there exists r>0 such that () holds

im ¥ = e 3 Reca i he 1imit 4
and let n%iiahn = XO » Xy # Ly o Because X is the limit of { }n} y

so there exists a number N such that for any n>1MN , Z € K(Xo,r),

(see [1]1). From (x) implies that (F(X),L)< € . Hence lim F(Xn) = L.

n—p o°
Now, let us ascume that (#%) holds and for some ¢ = EO > O does
. not exist r>0 such trat (#) holds. Then for each I = 1/n , n=1,2,...

there exists a fuzzy number X, such that Xne K(Xo,l/n) and
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X, € S(XO,1/n) and D(F(Xn),L) > £, This means that Xy + Xy s

%%Sw ¥, =X, and D is not the limit of the seguence {F(Xn)} in

contradiction with (#%x) . Hence () holds. The proof is complete.

Theorem 1.2. If 1lim F(X) = L, and 1lim F(X) = L, then

XX, T XX,

.

Proof. Let us assume that 1lim X = X, , lim XI; = X, and
lim F(X ) = L, , lim F(X ) = I, # Iy . Then the sequense {Yn} ,

o -
Y = Xn converges to X, but the seguence

Th T = X
where 12n-1 X .6

n '’ “2n

{F(Yn)} diverges - a contradiction.
Tefiuition 1.4. The fuzzy number L is said to be the left-hand
(right-hand) 1limit of the fuzzy function F at XO- if for any seguence

{Kn% of fuzzy numbers such that X < X, (Xn>~XO) (see (17 )

lim X_ = X = 1im FT(X. ) =1 .
nes 0 n-—poo n

The notations
lim F = L and 1im T(X) = L
XO X-*Ko

and
1lim P = L and lim F(X) =1
X3 x—,XC‘)’

are used to denote that L is the left-hand or right-hand limit of

T at X. respectively.

0
We may give the another but equiponderant definition of the leflt-

hand and right-hand limit of the fuzzy function.

Tefinition 1.5. The fuzzy number L is said to be the left-hand
(right-hand) limit of the fuzzy function F at X, if corresponding

to each number &> 0, there is a number r >0 such that whenever
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X €5 (¥gsT) (Xe §7(Xy,x)) then D(F{X),L)<E .
So,
lim_ F(X) = I if and only if NNV N D(F(X),L)<E
X+ X, €0 r>0 XeS (Ko,r)
and
lim F(¥) = I if and only if NV N D(F(X),L)<E .
X—v—XS E¥0 r>0 .XeS'(XO,r)
Theorem 1.3. The fuzzy number L is the limit of the fuzzy function

F at XO if and only if there exist the right-hand and left-hand

limits of T at X, and are egual.

We omit the proof of this Theorem since it is the same as the

proof of the corresponding theorem in classical analysis.

L and

and G are fuzzy functions and lim F
- X

Theorem 1.4. If F "

1lim G = L2 then -
X0
‘ 1im(F+G),lim(F-G),

lim (F+G) , lim (F/G)
% X

%o X9
exist (for F/G under the assumtions O ¢ supp L, and O ¢ supp ¢(X) for

any %) and

lim (F + G) = 1lim ¥ + 1lim G =L, + Ly
%o %o %o
1im (F = G) = lim ¥ - 1im G = I,- L,
g X Xy
1im (F-G) = lim F .1im G = L D

0 0 0
lin (F/6) = 1lim F/lim G = L4/Ly .

X0 X %o

This Theorem implies from +the Definition 1.3 and from the correspo:

{see [1J).

ding theorem for the sequences of fuzzy numbers
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Corollary. If 1im F = I, then 1im ck cl, where c 1s a real

x X
number. 0 O

KO and if there exists

Theorem 1.5. If 1im F = L and lim G
7 Y
0

o number T » O such that G(Y) # X, whenever O<CD(Y,YO)<‘r, then

1im (FeG) = L.

Yo
Proof. Since 1lim F = 1, corresponding to any number &> 0 there
| 25
is a number 7> O such that
D(F{X),L) <€ (0« D(X,X5) < )-
We may replace this inequality by
D(F(e(T)),I) < € (0<D(E(T)5%g) < ) €
gince 1lim G = XO , there is a nunber r1>»O such that
YO f K
D(G-(Y),XO)<Q (o<DY,fO) <r1).

Since by hypothesis D(G(Y),XO) > 0 whenever 0< D Y,YO)< r, if we let
T Dpe the smaller of the two numbers Ty and r, then we have

0« D(G(Y),Xo)<'? (o<D(Y,YO)<'r') (==)
Combining () aund (ux), we have

D(F(G(Y)),L) <& (0¢ D(Y,YO) < T).
That is,

1im (TFeG) = 1im p(a(y)) = L.

5
%0 ¥y

5. Continuity of a fuzzy function.

Tefinition 2.1. The fuzzy function F is continuous at the fuzzy
number Xy 1f for cach £> 0 there exists a number r >0 such that

-D(F(X),F(XO)) < ¢ whenever D(X,XO)< r.
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e may give the another but -equiponddrant definition of the conti-
nuity of the fuzzy function.

Definition 2.2. The fuzzy function F is continuous at the fuzzy

number X, if ‘for any sequence {Xn% of fuzzy numbers such that
lim ¥ = X. we have 1lim F(X_) = F(X,).
n o] n 0
1o 3 >0

The above definitions are equivalent to : The fuzzy function F is
continuous at the fuzzy number X, if l%m T = F(KO).
Xy
Theorem 2.1. If the fuzzy functions F and G are continuous at XO ’
then P + G, F - G, and F-G are continuous at XO, and F/G is continuous
at X, provided O ¢ supp G(XO).

Proof, This theorem implies from the Theoreml.4.

Theorem 2.2. If F is continuous at XO, lim G = X5 , then

0

lim (FeG) = F(XO).

Proof. Since T is continuous at XO, corresponding to any number

£ 0 there is a number r> 0 such that

D(F(X),F(Xy)) <€ (%)
whenever D(X,XO) < r, Also since 1lim G = XO , corresponding to r>0
o
there is a nuaber T, 0 such that
D(G(Y),XO)< r (=)

whenever 0« D(Y,YO)< r,. Iow, if 0 <D(Y,YO)<~I‘1 then by (==
D(G(Y),XO)< r. Moreover by (&) D(F(G(Y)),F(XO))<E .
Thus we have shown that corresponding to any number € > O there is a
number r> G such that

D((FeG)(Y),F(X,)) <€
whenever 0¢< D(Y,YO)<:r.

That is, 1im (FoG) = P(X,).
Y
0
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Corollary. If G is continuous at Y, and F 1s continuous at G(YO),

then FoG is continuous at YO .
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