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A.Nickiewicz University, Institute of Katkematics
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SUMIARY. In this paper we discuss, from the viewpoint of the
many-valued logic, the suitability of the cardinality definition
proposed by D.Dubois and E.Prade for twofold fuzzy sets (/1/,/2/),
and present its important consequences.

1. TWCFOLD FUZZY SETS

The notion of twofold fuzzy sets has been introduced by D.Dubois
and H.Prade (see e.g. /1/,/2/) as a. generalization of Gentilhomme’s
flou sets and seems to be one of the most interesting approaches
to representing incomplete knowledge. 4 twofold fuzzy set T is
defined as an ordered pailr (A,C) of fuzzy subsets A,CcU such that
AC1G’. T models a set with a fuzzy boundary. A is then & set of
elements from U which more or.less certainly belong to T whereas
C contains (in the sense of many-valued logic) elements which more
or less possibly are in T. The intersection CnA’ is composed of
elements whose belonging to T is dubious. The fulfilment of the
intuitive postulate ’'more or less certain belonging to T implies
that its possibility equals 1’ is ensured by the assum.ptionC1
contains A.

Any fuzzy set FcU can also be considered as a twofold fuzzy one
in two ways, different from the viewpoint of interpretation of
membership (see /1/,/2/): either as (‘lF4 ,F) or as (F,supp(F)).

The pair (D,D) is a "twofold fuzzy" representation of a crisp
subset DcU.

2. DEFINING THE CARDINALITY OF T=(A,C)

Assume A,C are finite fuzzy sets, i.e. their supports are

finite. D.Dubois and H.Prade use Zadeh’s fuzzy cardinals (see /1/),
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denoted by FGCount, as a tool for describing the cardinality of
twofold fuzzy sets:

FGCQuntF(k) :=sup {te(O, 1] : card(Ft)zk}.

It is well known that FGCountn(k) is the possibility of the
event ’the fuzzy set F contains at least k elements’. Moreover,
FGCountF(k)=fk , where fy denotes the k-th element in the
nonincreasingly ordered seguence of values F(x) for all xesupp (F)
with £ :=1 and fj:=O for j}cxud(supp(?)) (see /5/)«

So, FGCountC(k) is the possibility that ¢ (i.e. the set of more
or less possible elements of the twofold fuzzy set T=(A,C))
contains at least k elements, and 1-FGCountA(k+1) is the
necessity that the number of more or less sure elements of T
equals at most k. Then (see /2/) n, .. in order to have k as a
somewhat possible value for the cardinality of T, k must be
somewhat certain as an Upper bound of the cardinality of the set
of the more or less sure elements of T and somewhat possible as
a lower bound of the cardinality of the set of the more or less
possible elements of T." Thus, conclude the authors of /2/,
the cardinality of T should be defined as follows:

(&) cardT(k):= min(ck,1-ak+1) ,

where the values 8;,Cy (corresponding to A and C, respectively)
are defined as fk for F. In the opinion of the author of this
note, that does not suffice to accept formula (&) as a reasonable
approach to the important question how to define the cardinality
of T. The above cited words could only be a nice explanation

or interpretation of (&).

3, FORMAL SOURCE OF THE FORMULA UNDER DISCUSSION

Let Pk(C) denote the family consisting of all the k—-element
crisp subsets of supp(C). By [E] we shall denote the truth value
of an expression E.

Proposition. (/6/)  For each T=(4,C) and k=0,1,2,...
[HlYePk(c): seycC)= min(ey,1-2,,4)

Proof. Is gquite analogous to that of Proposition 3.3 in /5/.
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REMARKS AND COROLLARIES

1. Formula (&) seems to be now quite acceptable and clear.
o, The cardinality definition (&) for twofold fuzzy sets 1s
(taking into account the Proposition) in principle a slightly
adapted version of Klaua'’s definition of partial cardinals
' for partial sets (see /3/,/4/).
3. On the other hand, the definition

(&&) - caxdT(k):=[]YePk(c): Acch]

is a simple and natural generalization of the definition
of the Cd-cardinals (see /5/) obtained by replacing the
condition A=Y (equivalent to ACYcA) with AcYcC, where AcC.
Here also

[g_lYePk( C): AcY cC]:[}YePk(U) : AcYcC] .

4. By.putting some specially selected sets as A and C (see /6/),
formula (&&)'can be used as a generator for obtaining fuzzy
cardinal numbers FGCountyp , Crdgp , Cdtgp Cdgp (see /5/)
proposed by L.A.Zadeh, D.Dubois, E.P.Klement, and by the

~author, respectively.

5. Using various types of fuzzy cardinal pumbers (see /5/) and

considering F first as a fuzzy set and then as a twofold fuzzy

set, we obtain identical orT different information about
the cardinality of F.
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