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In this paper a careful distinction is made between fuzzy propositions
(i.e. propositions involving vague predicates) which may have intermediary de-
grees of truth, and uncertain propositions {(with non-vaque predicates) whose
truth or falsity cannot definitely established due to the incomolet%ess of the
available information. Then the resolution principle is extended in the case
of uncertain propositions where the uncertainty is modelled in terms of ne-
cessity measures. The alternative use of probability measures or of Shafer's

belief functions is also discussed.
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1 - Introduction and backaround

-__..__..--__..____..____.._..___

The management of uncertainty in inference Systems is an important issue,
due to the imperfect Nature of real world nformation. Recently a new approach,
based on possibility and necessity Measures, has emerged for the treatment of
uncertain pieces of knowledge. In the following, the basic background of this

approach 1s given.

Let (P,v,a) pe 3 Boolean algebra of propositions. A possability measure

I defined on P satisfies the tollowing axioms [18)

1
max(N(p),N(q))

N =0 ; N
1)

1"

Vp, Vaq, N{pvq)

where O (resp. 1) denotes the ever-false (resp. ever~true) proposition ; i.e.
Yp€P, parqp=0p and p Vp = 1 . N(p), which belongs to the real interval
{0,1] is an estimate of the degree of possibility that the proposition P 1s
true. Note that N(p) is not a degree of truth ; here we only have the two
usual truth-valuyes - ‘true' and ‘false’. Moreover, as a direct consequence

of (1) we have
vV p, max((p) ,N(p)) = 1 ) (2)

which expresses that at least one ot two opposite Propositions must be con-
sidered acs possibly tryue. By duality 5 necessity measure N is associated with
3 possibility measure ]I according to a definition [2] which extends the usual

relationship between possibitity and Necessity in modal logic,
Vop, N(p) = 1-lI(qp) (3)
Clearly N satisfies the axioms

= . ) =
N(D) 0 ; N(1 1 (L)

Up, ¥V q, Nipag) = min(N(p),N(q)) -

We have ¥ p, min(N(p) NQIp)) = g . (5)



N(p) is the extent to which the propesition p can be considered as necessa-
rily (or certainly) true with respect to the current state of knowledae ;
note that, due to (5), as soon as N(p) > 0, then NOD) = 0, i.e. two opPDO-
site propositions cannot be simultaneously considered a8s somewhat certainly
true. When the proposition p is known or proved to be true, we have N(p) =
1 (or equivalently l(9p) = 0) ;it entails N(p) = 1, but lp) = 1 is not 5
sufficient condition for asserting that p is true. When the proposition p

is known or proved to be false, 79p is true and we have NAp) = 1 (or eaqui-

valently NI(p) = 0).

Note that we only have the following inequalities

Vop, Va, N(pvq) > max(N(p) N(q)) (6)
Vp, ¥ q, Nipag) < min(Ml(p) ,Ti(g)) 7

The corresponding equalities do not hold in general. Besides, it can be pro-

ved that if p - q = T then NI(g) > I{p) and N(qg) > N(p), where r+q stands for

Then the following patterns of reasoning can be easily validated (see
(141, 043, L6
N(p + q) = «a
N(p) B (8)
a > N(g) min(c,B)

1t

[AV4

and

N{p = @) = ¢
8 (8*)
a > N(Ip) > min(a,B)

N(q)

"

where p + q is defined as Apvq (which entails p - Q =7Q -~ Ip). The patterns
(8) and (8") respectively extend the modus ponens and the modus tollens, whict
are recovered for a = B = 1. Note that there does not exist an analogous pat-
tern of reasoning changing the necessity measure into 2 possibility measure eve-
rywhere and min into arother aggregation operation ; see (143, 043, (637, More-
over we can extend necessity meesures :io formulas 1nvolving predicates, by

postulating that

N(Y x P(x)) = inf  N(P(x)) (9
x €D

s
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where P s a predicate and b 1 the domain of variable x. Note that (9) is in
agreement with (4) when D i finite, since then UxP(x) js equivalent to the
conjunction P(a1) ALl on P(an) where D = {61,---,5n)- Then, using (3), we

have

H3IxP(x)) = sup NP(x)) Qaom
x €D
which In turn is in agreement with (1). Thus the following pattern of reaso-
ning 1s valid

NUxP(x)) = @
. (11

N(P(a)) >«

which extends the usual particularization mode of inference.

Fossibility and necessity measures are an alternative to probability
measures for representing uncertainty ; they enable us to distinguish between
the total lack of certainty in the truth of p (N(p) = 0) and the total cer-

tainty that p is false (I(p) = 0.

By "fuzzy proposition” W€ mean a proposition which involves a vaque pre-
dicate or a vague quantifier. In the following we only consider propositions
with vague predicates. for instance 'John is tall' 1s & fuzzy proposition
since the meaning of ‘tall" remains vague, even in a given context. A fuzzy
proposition may have a degree of truth which is intermediary between 'true'
and 'false', for instance, let h(John) be the value of John's height, suppo-
sed to be precisely known, then Utall(h(JOhn)) 1s a number belonging to the
real anterval [0,1) which can be viewed as the dearee of truth of the propo-
sition 'John is tall' (Utall is the membership function representing the fuz-
2y set of heights regarded as tall ‘N 3 given context) ; see [17). The truth-

vatue v of 3 compound fuzzy proposition P can be expressed in terms of the

truth-values of itg components, according to the following formulas [17]

vap) = 1-v(p) 12)
min(v{p),v(g)) (13)
max(v(p) v(qg)) (14)

vipnrq)

vipvag)
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This can be extended to Propositions with umiversal and existential quant -

fiers, using the formulas

viUx P(x)) =  inf vIiP(x)) (1s)
x €D

v(3x P(x)) = sup viP{x)) (16)
’ x €b

The use of conjunctive and disjunctive operators other than min and max, as
vell as other complementat ion operators can be tontemplated ; see (2] for
instance. With definitions 2)-(14), the excluded middle law and the contra-

diction law no longer hold for fuzzy propositions.

Uncertain prooositions,considered in the preceding subsection, must not
be confused with fuzzy propositions. In the first case we have propositions
which are true or Tfalse (thus involving nNon=vague predicates), but due to the
Lack of precision of the available information we can in general only estima-
te to what extent it is possible or hecessary that a proposition is true. In
the second case the available information 1S precise, but the vagueness of
predicates leads to have propositions with intermediary decrees of truth. Ob-
viously we may encounter a fuzzy proposition for wvhich the available reference
information js not precise ; then we have the general case of an uncertain
fuzzy proposition ; the study of such propositions is out of the scope of the
present note ; see [{3] {or 5 discussion. Thuys the apparent similarity between
(3, ), (1), (9 and (10) on the one hand and 2y, (13, (16Y, (15) and
(16) on the other hand, due to the tommon use of the operatore 1~C.), min and

max, is superficial and must not lead us astray.

Patterns of reasoning in the style of (8) can be developed for fuzzy
propositions, j.e. compute bounds for vig) from the knowledae of vip) and
vip =+ q) ; see [ 27 for instance. However there are different naturat ways for
defining vi(p - q) from (12)~Q14), a5 discussed in [5) / Moreover we may have
vOp -~ 3q) ¢ vip - q), for some definitions of the implication operator, when
vip + q) is not defined as vOipva). 1t can be broved that we have

vig) > min(v3pvg), vip)) only if v(apvg) 2 0.5 and vip) > Q.5 (see (23, p.167).

Quite early in the development of fuzzy set theory, an extension of Robin-

son’'s resolution principle [15) yag proposed by Lee [ 9] ¢ around clasuses in
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the framework of the fuzzy logic defined by (12)-C14) i ¢, for dealing with
fuzzy propositions . note that the resolution Principle avoids the explicit
use of the ymplication connective n the representation of the knowledge.
Basically, Lee [ 9] proved that if al{ the truth-values of barent clauses
are greater than 0.5, then 3 resolvent clause derived by the resolution prin-
cipte always has a truth-value between the maximum and the minimum of those
of the parent clauses. This result was discussed and completed by Aronson,
Jacobs and Minker (1] and by Mukaidono (113; tee's result has been recently
used by Ishizuka and Kanai L8] and by Orci (123 for developing fuzzy logic

programming languages. See also Martin [10) for the treatment of fuzzy truth values,

In the following, we discuss the extension of the resolution principle

Lo uncertain Propositions in the sense of the preceding subsection.

I1 - kesolution Brinciple for uncertain propositions

It 1s a2ssumed that the reader j¢ familiar with the resolution principle.
In 1ts simplest form, the resolution pPrinciple corresponds to the following

pattern of reasoning in the propositional case

F pvaq

Fpvr

E— 17)
Foqvr

"vQ and Ypvr are called the parent clauses and Qvr is the resolvent of this
eair of clauses. The pattern (37) can be generalized 10 uncertain pPropositions

vader the form

Ni{pvg) = o
NGipvr) = g
. (18)

N(gvr) 2 min{a,B)

e = B = 1, the pattern (17) is recovered. Note that the values of N(pvq)

nd of NQpve) can be independent Ly assigned except 3i{ 9 =r =0, vhich con-
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trasts with the case of fuzzy propositions, where the assignment v(pvg) = a,
vbpvr) = B requires a 2 1-B. The pattern (18) js €easy to establish since
using (4), we have N(qvr) = N(pvqvr)a(ipvqvr)) = min(N(quVr),N(lpVQVr)).
Then using (6), we have N(pvqvr) 2 Nlpvg) = a and NGpvavr) > NGpvr) = g,
vhich makes the result obvious. Besides, no non-trivial uoper bound can be
found for N(gvr) in (18), which differs from the result obtained by Lee [ 9 )
in terms of truth-values of fuzzy propositions. Indeed, it can be checked
using (4) that the assianment N(pvqve) = NQlpvqvr) = 1, Npva\ir) = o and
N(Ipvigvr)= B gives N(qur) = 1 while N(pvq) = a and NG(ipvr) = B ; the above
assignment is feasible, since due to the axiom (4) 5 necessity measure on

the Boolean algebra generated by {p,q,r} is defined by its value on the clay-

ses with three distinct literals.

It is well~known that in classical togic the resolution principle ic an
inference rule which encompasses the modus ponens, the modus tollens and the
chaining. This is still true in case of uncertainty. Indeed with a = 0, the
pattern (18) reduces to (8), and with r = 0, it reduces to (8') since pvg =
Ta -+ p ; changing q intorq in (18) yields N(q = r) 2 min(a,B) when N(g = p) =
and N(p - r) = B._ However the upper bound on the certainty of the conclusion,
which can derived in the extended modus ponens (8) or modus tollens (8'), can
no longer be obtained with (18). Note that thisg upper bound i brittle, since
with N(p + @) > a and N(p) > B we only conclude N(Q) > min(a,B) ;i.e. no non-
trivial upper bound exists for N(q) ; a similar result holds with (8') . 0opb-
viously, from N(pvq) 2 a and N(qpvr) > B, (18) enables us to deduce N(qvr) >

minta,B) .

Let S be a set of ground clauses. By R(S) we mean the union of S with
the set of all ground clauses obtainable from § using one application of the
resolution principle (i.e. all the resolvents of the pairs of members of §).
Let R™(S) be result of iterating the ryle n times. Then, due to (18) and
the 8ssociativity of the min operation, we can state the following
n

,(m]. Let ¥ 3 = 1, m, N((i) = a,. Let O denote any

Theorem : Let s = fe,, ...

clause in Rn(S). Then YV n > 0, Nee™ 2 min a.. This theorem expresses that
i=1,m

the degree of certainty (expressed in terms of necessity) of any logical con-
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~ {

Lrasts wath the case of fuzzy Probdosytions, where the 2ssignment vipvq) = a,
vOpve) = B orequires a 2 1-B. The pattern (18) js €asy to establish since
vsang (4), we have N(gvr) = N(QVQVr)A(WpVQVr)) = min(N(pVQVr),N(IQVQVr)).
Ther using (6), we have N(pvqvr) > N(pvq) = a and NG pvqvr) > NGpvr) = B,
which makes the result obvious. Besides, no non-trivial upper bound can be
found for N(qvr) in (18), which differs from the result obtained by Lee [93
mnoterms of truth-values of fuzzy propositions. Indeed, it can be checked
using (4) that the assignment N(pvqvr) = NQlpvgvr) = 1, Nlpvgvir) = ¢ and
NQipvigyve)= B gives NCqvr) = 1 uhile N(pvq) = a and NQpvr) = 8 ; the above
assranment is feasible, since due to the axiom (L) 3 necessity measure on
the Boolean alaebra generated by {p,q,r) is defined by its value on the clay-

ses with three distincs: Literals.

It 1s well-known that in classical logic the resolution principle is an
inference rule which encompasses the modus ponens, the modus tollens and the
chaining. This is still true in case of uncertainty. Indeed with q = 0, the
pattern (18) reduces 1o (8), and with ¢ = 0, it reduces 10 (8') since pvq =
Ta = p ; changing q ntor q in (18) yields N(q - r) > min(a,B) when N{q - p)
end N(p - r) = &_ However the upper bound on the certainty of the conclusion,
which can derived in the extended modus ponens (8) or modus tollens (8'), can
no luger be obtained with (18). Note that this upper bound s brittle, since
with N(p -+ @) 2 a and N(p) > B we onty conclude N(qg) 2 min{a,B) :ie. no non-
rivial upper bound exists for N(q) ;@ similar result holds with (8') _ op-
viousty, from N(pvq) 2 a and N(qpvr) > B, (18) enables us to deduce N(qvr) >

min(a,B),

Let S be a set of ground clauses. By R(S) we mean the union of S_uith
the set of att ground clauses obtainable from S using one application of the
resotution principle (i.e. all the reéolvents of the pairs of members of S).
Let R™(S) be result of iterating the rule n times. Then, due to (18) and

the 2550T1ativitly of the min operation, we can state the {ollowing

Theorem : (et § = {C1""’Cm)' tet ¥V 1 = 1 ¢, N(Ci) = Oi' tet ¢" denote any

n . .
clause 1n R”(S), Then V n > 0, N > min a.. Thig theorem expresses that
1=1,m

the degree of certainty (expressed in terms of necessity) of any logical con-

Q



128
sequence obtained by repeatedly aoolying the 1 esolut 1on orincipte, wvill be
at least equal to the one of the most uncertain parent clause. This simple
result agrees with our intuition. Note that some " such that N(C™) > min a
exist.
Remark 1 : A similar result exists when the uncertainty i< modelled in terms

of probability. Indeed the following pattern can be easily established

Prob(pvqg) = a
Prob(ipvr) = R

(19).
Prob(qvr) > max(0,a+6-1)

First, note that we must have a+8 21 3n (19) since we have necessarily
Prob(p) < a and Prob(ap) < B. Besides no non-trivial upper bound exists,
since it can be checked that Prob(qvr) = 1 is compatible with the premises

of (19). To prove (19), tet us add the members of the two equalities

a = Prob(pvq) = Prob(p) + Prob(a) - Prob(pag)
B
it yields

it

Prob(ipvr) = Prob(ap) + Prob(r) - Prob(qpnar)

otB- 1 = Prob(qvr) + Prob(qrr) - Probl{paq) v(apar))
whence the result since (pr@d)Vv(Qprr) = (pAq)V(WpAqAr)V(wpﬁwth) =

(qAr)V(pAqﬂwr)V(Wpﬂqur) and if p= aq= T then Prob(qg) > Prob(p).

The operation * defined by a*B = max(0,a+R~1) on (0,13x00,1] is associa-
tive and is such that a*+ a é ara*.. . *alm times a) = max(0,m.a-m+1) and thus
Ya?z1, 3Mfinite, ¥ m > M, a*"a = 0. As a tonsequence, the repeated appli-
cation of (19) may lead to a lower bound which is not very much informative,
vwhatever the quality of the lower bounds on the probabilistic deorees of cer-
tainty of the parent clauses. This behavior does rot exist with min. Moreover we
have V¥ (a,B) € [0,1]2, min(a,B) > max(0,0+6-1) which compensates the fact that
N(p) must be regarded in general as a lower bound of Frob(p) ; see [ 23 for

instance, p. 138,

Remark 2 : 1t is worth noticing that the pattern (19) still holds for Shafer's

belief functions (163, i.e.
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Bel (pvg) = a
Bel(ypvr) = B

20
Bel(qvr) > max(0,a+p-1)

where Bel is a function from P to (0,1], which can be built from a so—called

basic probability assignment m (a function from P to (0,1) such that

m(0) = 0 and E: m{p) = 1) according to the formula [16)
p€P

Bel (p) = Z: - m(q) 21
Q:qgp=1

Using (21), (20) is easy to prove. lIndeed, we have

a+f = Bel (p¥g)+Bel (ApVvr) = E: m(s) + §: m(s)

s € (1 s € C2

"

with ¢, = {s € P, 9svpvq = 1) and , = {s € P, 9svipvr = 1)

Let C3 {s € P, Asvipva)A(pvr)] = 1) = €C.nC.. Then we get

1 2
a+B = Z: m(s) + y‘ m(s)

—

sEC1uC2 sEC3
< E: m(s) + 2: mis) = 1 + Bel(qvr)
s €P Aasv(qvr)=1
since CB < {s € P, Vsvi(qve) = 1 }. Necessity measures and pro-

bability measures are particular cases of betief functions (2] ; the pattern

(20) shows that the lower bound obtained with probability measures is the

same as with any belief functions ; this lower bound is improved in case of

necessity measures.,

2) Predicates

The resolution principle {or predicate calculus can be stated in the {fol-

loving way. Let L1 be an atomic formuta, 1.e. a3 predicate symbol of degree n
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followed by n terms (a €onstant 1s a teem, a variable 'S 8 term, a function
bearing on terms is still a term). Let L2 be the neaation of the same predi-
cate with different terms. Let Q and r be clauses. Let plo) denote the clau-
se obtained by applying the set of elementary substitutions snpecified by o

to the occurrences of variables in the clause p. I{ the elementary substity-
tion in 04, aoplied to the variables in L1 and LZ’ make L2 1dentical to 1L1,

then from L1Vq and L2Vr the resolvent (qu)[O1J can be deduced.,
For example the resolution principle applied to the clauses

Plx,f(y)) v a(x) v R(a,y)
AP(b),2) v R(z,1)

yields
QU (b)) v R(a,y) v R(f(y),1)

using the elementary substitutions f(b)/x and f(y)/z,

We already observed that the substitution of » variable by a constant in
a universally quantified proposition can only increase the necessity dearee
attached to the proposition (see pattern (11)). More ocnerally from
NV x P(x)) > o we can infer that YV y, N(V y P(1(y))) 2 @ where 1 is mapping ;
note that N(Y y P(f(y))) may be greater than N(Y x P(x)) since f is not neces-
sarily onto. Thus the application of the resolution principle for predicate
calculus is compatible with a tomputation of a lower bound of the necessity

dearee attached to the resolvent using (18) and (11,
For instance if we know that

N(3 x P(x)) = ol
and that NOY y P(y)s Q(y)) = f3

this can be written in s logic proaramming style using a Skolem constant A
putting the greatest known lower bound of the necessity dearee between paren-

theses after the clause

PCA) (a)
T P(yIvaly) 8)

from*which we infer (applying the substitution A/y) that
Q(A) (min(a,B))
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vee, N(3 z Q(2)) > minle B) . This very simple example s considered by Nilsson
(12) with a probabitistic modelling of uncertainty, but 15 not dealt with by
resolution.
3 - Refutation

A very popular way of using the resolution principle is the refutation
method, 1.e. the proposition to be proved is assumed to be false, and its ne-
gation i1s added to the set of ground clauses ; when the proposition is actual-
ly true, the resolution principle enables the empty clause to be derived,
thus establishing a contradiction. The refutation method can provide conclu-
sions which could not be derjved by direct application of the resolution prin-
ciple. Such conctusionsq are such that 3 P, Prq = T and p can be obtained

via the resolution principle.

The refutation method can be extended to the case of uncertain proposi-
tions. To do so, the negation of the proposition to prove is added to the set
of eround clauses, with a necessity degree equal to 1. for instance if
S = {hevg,p) where Napvg) = a, N{p) = B, and q is to be proved then we start

with

1q (1
T pvg (a)
D (8
By resolution we successively obtain
ap (min(1,a))
0 (minta,B))

where 0 denotes the empty clause, and we conclude that N(qQ) > min(a,B). Indeed

the following result holds

Theorem : The grade of necessily attached to the empty clause, corresponds to

¢ lower bound of the grade of necessity of the proposition to prove, using

the refutation method for ground clauses

Proof : Let q be the proposition to prove. Either q can be produced by itera-

ting the resolution principle on the set S of ground clauses, or not. 1f it

tan be, we get sooner or later the pattern



1q ()
qQ (o)
{for some a, which {eads to
0 (a)
i.e. the lower bound of N(D) is the same as that of N(a). Otherwise some im-

plicant r of g (G.e. r+ q = T) is obtained, then 3 s, g = ryvs and the pat-

tern
ar (@D
s QD)
r (a)

for some a, leads to
0 (a)
and so, N(q) > N(r) > a. Q_E.D.

Lastly, the method initially proposed by Green(7] for Question-answer ing
systems can be adapted with necessity dearees. Namely if the query '3 x Q(x)?'
is to be processed, the clause 1Q(x)vanswer(x) ig taken for granted instead
of 7 Q{(x). Instead of deriving the empty clause, the predicate 'answer' is de-
rived, where x may have been substituted. 'answer' serves as a2 collector cap-
turing a constant a such that Q(a) is hopefully true. for instance, knowing

that

N PIx)IVa(x) (a)
P(a) (B8)

in order to answer the query '3 z Q(z) 7' we assume
1{z)vanswer (2) &Y

and by resolution we obtain the result

answer (a) (min(a,8)).

Estimating uncertainty in terms of necessity deagrees is compatible with
the application of the resolution principle and geriving lower bounds of the
necessity deorees of the resolvent is very sample. (ontrestedly with the pre-
babilistic case, the obtained lower bounds do not decrease rapidly towards 0

in case of 3 repetitive use of the resolution principle.,
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Besioes in case of propositions which vould be both fuzzy and uncertain,
we may think of combining the result obtained by Lee [ 9] and the results pre-
sented here, expressing in terms of a necessity measure to what extent we are
sure that the degree of truth of a proposition is greater that some lower

bound.

The authors wish to thank Henr i fFarreny for valuabte discussions regar-

ding the contents of this paper.
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