A note on fuzzy queries involving a global evaluation of a set of values satisfying a fuzzy property ## Henri Prade Lab. Langages et Systèmes Informatiques Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex - France Let us consider a relation R in a relational database, involving two attributes ${\bf A}$ and ${\bf B}$, as pictured in Table 1 | R | <u> </u> | L_A | L | В | l | |---|----------|----------------|-----|----------------|-------| | | | a ₁ | ••• | b ₁ | ••• | | | | °2 | | p ⁵ | | | | : | : | : | : | • | | | | a
n | ••• | p | • • • | Table 1 The attribute values a_i and b_j are supposed to be precisely known, i.e. they belong to the attribute domains of A and B respectively. The queries we consider in this note are of the form "What is the global evaluation f of the a_i 's such that the corresponding b_i 's satisfy the fuzzy property B". The global evaluations f we are more particularly interested in here are the average, the maximum of the minimum of the a_i 's. Such queries when B is a crisp property can be easily handled by SEQUEL-like languages and thus it is desirable to treat them when B is fuzzy if we want to extend these query languages to all kinds of fuzzy/vague queries (see Hamon [5] for instance). Examples of such queries are "What is the minimum of the salaries of middle-aged people in the database?" or even "What is the average of the high salaries of people in the database?" (in this latter case A = B). Let B be a fuzzy set defined on the domain of attribute B. The b_i 's are assumed to be reordered according to the decreasing values of $\mu_B(b_i)$, i.e. $$\mu_{B}(b_{1}) \ge \mu_{B}(b_{2}) \ge \dots \ge \mu_{B}(b_{n})$$ (1) Let B_{α} be the α -cut of B defined by $\forall \alpha \in (0,1]$, $B_{\alpha} = \{b_i, \mu_B(b_i) \geq \alpha\}. \text{ Note that, due to (1), } B_{\alpha} = \{b_1, \dots, b_k\} \text{ where k is such that } \mu_B(b_k) \geq \alpha \text{ and } \mu_B(b_{k+1}) < \alpha \text{ (we assume } \mu_B(b_{n+1}) = 0 \text{ by convention).}$ Let $A(\alpha)$ be the set of values $\{a_1,\ldots,a_k\}$ corresponding to $B_{\alpha}=\{b_1,\ldots,b_k\}$, and $f[A(\alpha)]=f(a_1,\ldots,a_k)$. Then the fuzzy set N of the values of f applied to the a_i 's whose corresponding b_i 's are (more or less) in B, is given by $$\mu_{N}(r) = \sup\{\alpha | f[A(\alpha)] = r\}$$ (2) Note that $\mu_N(r) \neq 0$ only if $\exists \alpha \in (0,1]$, $f[a(\alpha)] = r$. For instance if n = 5, $\mu_B(b_1) = 1 = \mu_B(b_2)$, $\mu_B(b_3) = 0.8$; $\mu_B(b_4) = 0.5 = \mu_B(b_5)$, (2) gives $N = 1/f(a_1,a_2) + 0.8/f(a_1,a_2,a_3) + 0.5/f(a_1,a_2,a_3,a_4,a_5)$ where the grade of membership is before the '/' and '+' denotes the union of singletons. The fuzz set N is not always normalized, i.e. when $\mu_B(b_1) < 1$, $\not \exists r$, $\mu_N(r) = 1$; this corresponds to the fact that there is no b_1 which completely belong to B. The meaning of (2) is clear; depending on the membership threshold we consider, there are more or less a_1 's which are taken into account in the evaluation by f. In the expression (2), it is assumed that the α -cuts of B are the only possible crisp representatives of the fuzzy set B; \underline{all} the elements with a membership degree greater or equal to α must be considered in any crisp view of B of level α . It is why quantities like $f(a_1,a_2,a_3,a_5)$ or $f(a_1,a_2,a_3,a_4)$ for instance, do not appear in the above example. N.B.1. However as pointed out in [3], it would be possible to have a slightly different understanding of the fuzzy set B: the crisp set S is a representative of B if and only if $B_1 \subseteq S \subseteq S(B)$ (where $S(B) = \{b, u_B(b) > 0\}$); then the suitability of S for representing B is computed as $\inf\{u_B(b), b \in S\}$. In this view, the set of crisp representatives includes and is larger than the set of α -cuts. \square N.B.2. The expression (2) is quite similar to the first definition of the fuzzy cardinality of a finite fuzzy set proposed by Zadeh (see [3] and [9] for discussions); this definition is recovered for $a_i = 1$, \forall i and $f = \Sigma$. Thus the fuzziness of B induces a fuzzy set of possible answers $\mu_N(r)/r$ for the query, instead of one value when B is crisp. It would be desirable to summarize this information in a more concise, but still significant, way. It seems that this can be done at least in two different kinds of way. A first -quite intuitive- technique is to use the weighted mean $$\nu(N) = \frac{\sum_{r} \mu_{N}(r).r}{\sum_{r} \mu_{N}(r)}$$ (3) A slightly different expression which might be also considered is $$w'(N) = \frac{\sum_{i}^{j} f(a_{1}, \dots, a_{i}) \cdot \mu_{B}(b_{i})}{\sum_{i}^{j} \mu_{B}(b_{i})}$$ (3') A second, perhaps more subtle, technique is to compute the lower and/or the upper expected value attached to N. Let $\mu_N(r_j)$ be abbreviated by μ_j for j=1,q (μ_N is non-zero only for a finite number of r_j 's). Then the lower expectation $E_{\star}(N)$ and the upper expectation $E^{\star}(N)$ are respectively defined by $$E_{*}(N) = \sum_{j=1}^{q} r_{j} \cdot (\max_{k \le j} \mu_{k} - \max_{k \le j} \mu_{k})$$ (4) $$E^{*}(N) = \sum_{j=1}^{q} r_{j} \cdot (\max_{k \ge j} \mu_{k} - \max_{k \ge j} \mu_{k})$$ (5) where the r_j's are ordered increasingly, i.e. $$r_1 \leq r_2 \leq \cdots \leq r_q$$ (6) The reader is referred to [3] and [4] for rationales about these quantities. It can be proved for instance that the upper expectation of the fuzzy cardinality of a fuzzy set (when suitably defined) is nothing but its scalar cardinality while the lower expectation is the cardinality of the 1-cut. (See [3] and [6]). When the μ_k 's are decreasing, i.e. $$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_q \tag{7}$$ the expressions (4) and (5) can be simplified into $$\begin{cases} E_{\star}(N) = r_{1} & \text{if } \mu_{1} = 1 \\ E^{\star}(N) = \sum_{j=1}^{q} r_{j} \cdot (\mu_{j} - \mu_{j+1}) \\ = r_{1} + \sum_{j=1}^{q} \mu_{j} \cdot (r_{j} - r_{j-1}) & \text{if } \mu_{1} = 1 \end{cases}$$ (8) with $\mu_{q+1} = 0$ by convention. When the μ_k 's are increasing, i.e. $$\mu_1 \leq \mu_2 \leq \cdots \leq \mu_q \tag{9}$$ The expressions (4) and (5) yield $$\begin{cases} E_{\star}(N) = \sum_{j=1}^{q} r_{j} \cdot (\mu_{j} - \mu_{j-1}) \\ = r_{q} - \sum_{j=1}^{q-1} \mu_{j} \cdot (r_{j+1} - r_{j}) & \text{if } \mu_{q} = 1 \\ E^{\star}(N) = r_{q} & \text{if } \mu_{q} = 1 \end{cases}$$ (10) with $\mu_0 = 0$ by convention. These results are now applied to the cases where f is the maximum operation, the minimum operation and the average operation. ## i) f = max We have $\alpha \leq \beta \Rightarrow A(\alpha) \supseteq A(\beta) \Rightarrow \max\{A(\alpha)\} \ge \max\{a(\beta)\}$. Then it can be checked that when the r_i 's are increasingly ordered (i.e. (6) holds), the corresponding $\mu_i = \mu_N(r_i)$ are decreasing (i.e. (7) holds). Thus (8) applies. Let us consider the simple example given in Table 2. | R | ٨ | В | μ _B (b _i) | |---|--------------|--|----------------------------------| | | 8
10
7 | b ₁
b ₂
b ₃ | 0.8
0.6 | | | 11 | b ₄ | 0.5 | Table 2 (8) yields $$E_{\star}(N) = 8$$ $$E^{\star}(N) = 8 + 0.8(10-8) + 0.5(11-10) = 10.1$$ while (3) gives $$w(N) = \frac{8 + 10 \times 0.8 + 11 \times 0.5}{1 + 0.8 + 0.5} = \frac{21.5}{2.3} = 9.34$$ and (3') gives $$w'(N) = \frac{8 + 10 \times 0.8 + 10 \times 0.6 + 11 \times 0.5}{1 + 0.8 + 0.6 + 0.5} = \frac{27.5}{2.9} = 9.48$$ Note that it appears that w'(N) is <u>not</u> a suitable summarizer since if we add pairs $(a_k, \mu_B(b_k))$ such that $a_k \leq 10.0.5 < \mu_B(b_k) \leq 0.8$, we increase w'(N) whatever the values of the a_k 's, which is paradoxical! N.B.3. Besides we always have $E_{\star}(N) \leq w(N)$ when (8) applies, but the inequality $w(N) \leq E^{\star}(N)$ may not hold. Consider the following counter-example proposed in Table 3. | R | A | В | μ _B (b _i) | |---|---------------|--|----------------------------------| | | 8
9
9.5 | ^b 1 ^b 2 ^b 3 | 1
0.2
0.1 | Table 3 Indeed, we obtain $$E^{4}(N) = 8 + 0.2 (9-8) + 0.1 (9.5-9) = 8.250$$ $$w(N) = \frac{8 + 9 \times 0.2 + 9.5 \times 0.1}{1 + 0.2 + 0.1} = \frac{10.75}{1.3} = 8.269$$ When the $\mu_B(b_i)$ are increased, the μ_k 's are increased and E (N) increases tinearly as indicated by (8). E (N) gives a scalar estimate of the maximum of the a_i 's such that the corresponding b_i 's are representative elements of B; E_k (N) is a lower bound which is attached to the b_i 's which undisputedly belong to B. The fuzziness of B induces an uncertainty on the answer, represented by the pair $(E_k(N), E^k(N))$; when B is crisp we have $E_k(N) = E^k(N)$ (this is true whatever f). The meaning of $\mu(N)$ remains less clear and its behavior is not always completely satisfying as indicated in the following example given in Table 4. O | R | ٨ | В | ^ւ թ(թ՝) | |---|---|----------------|--------------------| | | 8 | ^b 1 | 1 0.9 | Table 4 Then we get $E^*(N) = 8 + 0.9 \times (9-8) = 8.9$ and $u(N) = \frac{16.1}{1.9} = 8.47$. We observe that when $\mu_B(b_2) \to 1$, $E^*(N) \to 9$ while $u(N) \to 8.5$, i.e. $E^*(N) \to f(a_1, a_2) = \max(a_1, a_2)$ which is intuitively satisfying; contrastedly $u(N) \to \frac{a_1 + a_2}{2}$. ## ii) <u>f = min</u> We have $\alpha \leq \beta \Rightarrow A(\alpha) \supseteq A(\beta) \Rightarrow \min\{A(\alpha)\} \leq \min\{A(\beta)\}$. Then it can be checked that when the r_i 's are increasingly ordered (i.e. (6) holds), the corresponding $\mu_i = \mu_N(r_i)$ are increasing (i.e. (9) holds). Thus (10) applies. Now $E_{\star}(N)$ gives a scalar estimate of the minimum of the a_i 's such that the corresponding b_i 's are representative elements of B; E(N) is an upper bound obtained if we only consider the b_i 's such that $\mu_B(b_i) = 1$. For instance, in the example of Table 2, we get $$E_{\star}(N) = 8 - 0.6 (8-7) = 7.4 \text{ and } E^{\star}(N) = 8.$$ It can be seen that w(N) suffers the same drawbacks as when f = max. ## iii) <u>f = arithmetic mean</u> Then there is no monotonicity property of the μ_i 's with respect to the r_i 's. Then we have to use (4) and (5) directly. Let us consider the following example where the arithmetic mean r_i and the corresponding μ_i 's are given in Table 5. | μ _i = μ _N (r _i) | 0.7 | 1 | 0.2 | 0.5 | |---|----------------|----|-----|----------------| | ri | 8 | 9 | 10 | 11 | | | ^r 1 | ړ5 | رع | r ₄ | Table 5 Then we obtain $w(N) = \frac{221}{24} = 9.2$; $$E_{\star}^{(N)} = r_{1} \cdot (0.7 - 0) + r_{2}(1-0.7) + r_{3}(1-1) + r_{4}(1-1)$$ $$= r_{2} - 0.7 (r_{2}-r_{1}) = 8.3 ;$$ $$E^{\star}^{(N)} = r_{1}(1-1) + r_{2}(1-0.5) + r_{3}(0.5-0.5) + r_{4}(0.5-0)$$ $$= r_{2} + 0.5(r_{4}-r_{2}) = 9 + 0.5 \times 2 = 10.$$ Note that r_3 , whose membership degree μ_3 is smaller than μ_2 and μ_4 , does not appear in the computation. This behavior is general, as it can be checked on (4) and (5). Only the "convex part" of N, here $0.7/r_1 + 1/r_2 + 0.5/r_4$ is taken into account; (a fuzzy set F defined on an ordered domain, is convex on its support $s(F) = \{r, \mu_F(r) > 0\}$ if and only if $\forall (x,y,z) \in s(F)^3$, $x \le y \le z \Rightarrow \mu_F(y) \ge \min(\mu_F(x), \mu_F(z))$). See [3]. Again the fuzziness of B induces an uncertainty about the answer, which is conveniently summarized by the pair of lower and upper expectations $(E_{\star}(N),E^{\star}(N))$; it gives an idea of the variability of the answer with respect to the different possible crisp interpretations of B ; this cannot be capred by the single number w(N) . N_B_4 . It can be observed that $E^*(N)$ in (8) (as well as $E_4(N)$ in (10)) is of the form $$\sum_{j=1}^{q} m(N_j) \cdot f[N_j]$$ $$(11)$$ with $m(N_j) = \mu_j - \mu_{j+1}$ (resp. $m(N_j) = \mu_j - \mu_{j-1}$); $f[N_j] = r_j$ and $N_j = \{r_1, \dots, r_j\}$ (resp. $N_j = \{r_j, \dots, r_q\}$). m is nothing but the basic probability assignment in Shafer'sense [8], attached to the membership function μ_N (see [2]). The expression (11) is still equal to $$\sum_{\alpha} m^{*}(B_{\alpha}).f[A(\alpha)]$$ (12) where m is the basic probability assignment attached to μ_B ; i.e. m $(B_{\alpha}) = \alpha - \beta$ with $B_{\alpha} = \{b_1, \dots, b_k\}$ and $B_{\beta} = \{b_1, \dots, b_k, b_{k+1}\}$, where $\mu_B(b_k) = \alpha$ and $\mu_B(b_{k+1}) = \beta$. If β a, α with $\alpha > \alpha$ such that β is the equality between (11) and (12) holds since β in the general case as another definition of a possible scalar answer when β is fuzzy; however it is a single number which in general differs both from β in the general case as another definition of a possible scalar answer when β is fuzzy; however it is a single number which in general differs both from β in the general case as another definition of a possible scalar answer when β is fuzzy; however it is a single number which in general differs both from β in another application context. N.B.S. The approach presented here can be extended to the case where our knowledge of the values of attribute A are pervaded with fuzziness and where the b_i's remain precisely known. Indeed formulas (4) and (5) can be straightforwardly generalized when the r_i's are fuzzy real numbers (the r_i's can stiple computed since operations such as 'max', 'min' or the arithmetic mean are defined for fuzzy numbers). When the b_i's are also fuzzily known we have to distinguish between the items which are more or less possibly B and those who more or less necessarily B; see [6,7]. Then, the approach can be applied to the possibility degrees and the necessity degrees separately. 42 - [1] Dubois, D., Jaulent, M.C. (1986) A statistical approach to the analysis and the synthesis of fuzzy regions. In Tech. Rep. n° 244, LSI, Univ. P. Sabatier, Toulouse. - [2] Dubois, D., Prade, H. (1982) On several representations of an uncertain body of evidence. In: <u>Fuzzy Information and Decision Processes</u> (M.M. Gupta, E. Sanchez, eds.), North-Holland, 167-181. - [3] Dubois, D., Prade, H. (1985) Fuzzy cardinality and the modeling of imprecise quantification. <u>Fuzzy Sets & Systems</u>, <u>16</u>, 199-230. - [4] Dubois, D., Prade, H. (1986) The mean value of a fuzzy number. <u>Fuzzy Sets</u> <u>& Systems</u>, to appear. - [5] Hamon, G. (1986) Extension d'un langage d'interrogation de base de données en vue de l'utilisation de questions imprécises. Thèse de Docteur-Ingénieur Univ. de Rennes, juin 1986. - [6] Prade, H. (1984) Lipski's approach to incomplete information data bases restated and generalized in the setting of Zadeh's possibility theory. Information Systems, 9, 27-42. - [7] Prade, H., Testemale, C. (1984) Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Information Sciences, 34, 115-143. - [8] Shafer, G. (1976) A Mathematical Theory of Evidence. Princeton University Press, Princeton, USA. - [9] Zadeh, L.A. (1983) A computational approach to fuzzy quantifiers in natural languages. <u>Computers and Mathematics with Applications</u>, 9, 149-184.