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A note on fuzzy queries involving a global evaluation

of a set of values satisfying a fuzzy property
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Let us consider a relation R in a relational database, involving two

attributes A and B, as pictured in Table 1
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The attribute values 8. and bj are supposed to be precisely known, i.e. they
belong to the attribute domains of A and B respectively. The queries we con-
sider in this note are of the form “What is the global evaluation f of the
ai's such that the corresponding bi's satisfy the fuzzy property B*'. The
global evaluations f we are more particularly interested in here are the ave-
rage, the maximum of the minimum of the ai's. Such queries when B is g crisp
property can be easily handled by SEQUEL-like lanauages and thus it 1s desi-
ravle to treat them when B is tuzzy if we want to extend these query langua-
ges to all kinds of fuzzy/vague queries (see Hamon (5] for instance). Examples
of such queries are "What is the minimum of the salaries of middle-aged peo-
ple 1n the detabase ?" or even “"What 1s the average of the high salaries of

people 1n the database ?" (3in this latter case A = B),
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Let B be a fuzzy set defined on the domain of attribute B, The b 's are
1
assumed to be reordered according to the decreasing values of UB(bi)’ 1.e.

>
Mgby) 2 1) > > u b ) (1

2
Let 8Q be the a-cut of B defined by ¥ a € 0,13,

B = {b.,, 1 (b,) > a}. Note that, due to (1), B = (b s, b ) where ks

a 7B i - a 1 k

such that uB(bk) > a and “B(bk41) <a (we assume uB(bn‘1) = 0 by convention).

Let Ala) be the set of values {a1,...,ak) corresponding to B, © (b1""'bk}’
and {[A(a)] = f(a1,...,ak). Then the fuzzy set N of the values of f applied to

the ai's vhose corresponding bi's are (more or less) in B, is Qiven by

uN(r) = supl{alflA(a)] = r) ()

It

Note that uN(r) # 0 only if 30 € (0,11, flala)] r. For instance if n = 5,

UB(bI) =1 = uB(bz), UB(bS) = 0.8 ; UB(bL) = 0.5 = UB(b

N = 1/f(a1,a2) + O.8/f(a1,az,a

S), (2) gives
3) + O.S/f(a1,az,23,a4,a5) where the grade of
membership is before the '/' and '+° denotes the union of sinoletons. The fuz>
set N is not always normalized, 1.e. when UB(b1) <1, Br, uN(r) =1 ; this co
responds to the fact that there is no bi which completely belong to B. The
meaning of (2) is clear : depending on the membership threshold ve consider,
there are more or less ai‘s which are taken into account in the evatuation by
f. In the expression (2), it is assumed that the a-cuts of B are the only pos-
sible crisp representatives of the tuzzy set B ; all the elements with a mem-
bérship degree greater or equal to a must be considered in any crisp view of [
of level a. It is why quantities like f(a1,a2,a3,a5) or f(a1,32,a3,a4) for ins

tance, do not appeér in the above example.

N.B.1. However as pointed out in (33, it would be possible to have a slightly
different understanding of the fuzzy set B : the Crisp set S is a representat”
ve of B if and only if By € 5 C s(B) (vhere s(B) = {b,ugb) > 0}) ; then the

suitability of S for representing B is computed as inf{us(b), b € S). In this
view, the set of crisp representatives includes and is Larger than the set of

a-cuts., O

o
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N.B.Z2. The expression (2) is quite similar to the first definition of the

fuzzy cardinality of a finite fuzzy set proposed by ladeh (see [3) and {93

for discussions) ; this definition is recovered for a. = 1, Viand f = [ .0

Thus the fuzziness of B induces a fuzzy set of possible answers uN(r)/r
for the auery, instead of one value when B 1s crisp. It would be desirable
1o summarize this information in a more concise, but still significant, way.

It seems that this can be done at least in two different kinds of way.

A first -quite intuitive- technique 1s to use the weighted mean

Z: UN(r).r

w(N) = L 3

Z uN(r)

r

A slightly different expression which might be also considered is

Z CIPRREIS RN
N = ] (3%

Z_Ua(bi)
i

A second, perhaps more subtle, technique is to compute the lower and/or
the upper expected value attached to N. Let UN(rj) be abbreviated by Uj for
j = 1,q (uN is non-zero only for a finite num?er of rj's). Then the Lower
expectation E,(N) and the upper expectation E (N) are respectively defined
by

t~"1n0

E‘(N) r..(r:i)f uk - :\i)-( Uk) (4)
3=1 ) )
Q

E’(N) = Ej rj.(max uk - max uk) (s)
. k>) >
21 2) k>)

vhere the rj's are ordered increesingly, i.e.
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r <r < ... < 6)

The reader g referred to [3] and [4] for rationalec about these Quantitieg,
1t can be proved for instance that the upper expectation of the fuzzy car-
dinality of a fuzzy set (when suitably defined) 1S nothing but its scalar
cardinality while the lower expectation 1s the cardinality of the T-cut.
(See (3] and [6)).

When the uk‘s are decreasing, i.e.
> >
Hp2ms, 2 il Mo 7

the éxpressions (4) and (5) can be simplified into

(e, 00 = FERLETRE
q
£h v }: ( )
= r..(u. -y,
J IS MY
)=1 (8)
q
= r, 4 be.Cro-r. ) ¢ v, = 1
\. L Ej by - 1
2
with Uq+1 = 0 by convention. When the uk's are increasing, 1.e.
My Su, <Ll < v, (9)
The expressions (4) and (5) yield
q
4 - Z '
E_(N) = ro.(u.-uy. )
* 57T
j=1
4
’ = rq - gi Uj'(rj+1-rj) 1f Uq =1 a0
i=1
T i f 1
=r o 3fy =
\ Q q

with UO = 0 by convention,

These results are now applied to the cases where { is the maximum ppe-



s

We have a < B = A(a) 2 AB) » max[A(a)) > max[a(B)]. Then it can be chec~
ked that when the ri‘s are increasingly ordered (i.e. (6) holds), the corres-
ponding Ui = “N(ri) are decreasing (i.e. (7) holds). Thus (8) applies. Let

us consider the simple example given in Table 2.

R A B uB(bi)
8 b, 1
10 b, 0.8
7 b, 0.6
11 b, 0.5
Table 2
(8) yields E,(N) = 8
E'(N) = 8 + 0.8(10-8) + 0.5(11-10) = 10.1

8 4 10x0.8 + 11x0.5 _ 21.5 _

while (3) gives w(N) = = = 9 34
T+ 0.8+ 0.5 2.3

and (3') gives w'(N) =  + 10x0.8 + 10x0.6 + 11x0.5 = 27.5 = 9,48
1+ 0.8+ 0.6+0.5 2.9

Note that it appears that w'(N) is not a suitable summarizer since if we add

pairs (a uB(bk)) such that ak <10 0.5 < uB(bk) < 0.8, we increase w'(N)

kl

whatever the values of the ak's, which is paradoxical !

N.BE.3. Besides we always have E‘(N) < w(N) when (8) applies, but the inequa-

 J
ity w(N) < € (N) may not hold. Consider the following counter-example propo-

sed In Table 3.

R A B UB(bi)
8 b1 1

9 b2 0.2

Q.5 b3 0.1
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Indeed, we obtain

E'CN = B 4 0.2 (9-8) + 0.1 (9.5-9) = §.250

8 + 9x0.2 + 9.5x0.1 10.75

w(N) = = ——— = B 269
4 4 1
1 0.2 0.1 .3 O
When the ”B(bi) are increased the ”b are increased and E (N) increases

tinearly as indicated by (8). E (N) gives a scalar estimate of the max imym
of the a 's such that the corresponding b 's are representative clements

of B ; E (N) is a lower bound which is attached to the b ‘s which undispy-
tedly belong to B. The fuzziness o! B induces an uncerta\nty on the answer,
represented by the pair (E (N), E (N)) ; when B g Crisp we have

E‘(N) = E (N) (this is true vhatever ). The meaning of w(N) remains tess

clear and its behavior is not always completely satisfying as indicated in

the following example given in Yable 4.

R A B UB(bi)
8 b1 1
9 b2 0.9
Table &

Then we get E*(N) =8+ 0.9 x (9- 3) = B.9 and w(N) = l§_~ ~ B.47.

Ve observe that when p (bZ) -1, E (H) = 9 Uhile w(N) - 8 S, i.e.

E Ny - 1(31,32) = max(a1,az) wvhich jg intuitively satisfying ; contrastedly

a *32

WY « — €

Ve have « <CB 2 AGa) D A(B)= minlA(a)]) S minlA(B)). Then it can be chec-
ked that when the ri's are increasinaly ordered Gite. (6) holds), the corres-

ponding ”i = “N(ri> are increasing (i.e. (9) holds). Thys (1 applies. How

E (M) gives a scalar estimate of the minimum of the ai's such that the correc-

ponding b.'s are representative elements of B, E (M) ig an upper bound obtas-

ned if we only consider the b 's such that ”B(bi) = 1. for instance, in the

example of Table 2, we get
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EL(N) = B - 0.6 (8-7) = 7.4 and £ (N) = 8.

It can be seen that w(N) suffers the same draubacks as when f = max.

Then there is no monotonicity property of the ui's with respect to the

ri‘s. Then we have to use (4) and (5) directly. Let us consider the following

example where the arithmetic mean ri and the corresponding ui's are given

in Table S,

ui = UN(ri) 0.7 1 0.2 0.5
rs 8 9 10 11
r1 r2 r3 4
Table S
Then we obtain w(N) = 2%%_: G.2 ;

1

£, (W) r1.(0.7 -0+ r2(1~0-7) + r3(1-1) + r4(1-1)

) =5 - 0.7 (r2~r1) = 8.3 ;

E (N) = r1(1—1) + r2(1—0.5) + r3(0.5—0.5) + ra(O.S—O)

+ O.S(ra-rz) = 9 4+ 0.5x2 = 10.

= r2
Note that rs. whose membership degree us is smaller than u2 and uA, does not
appear in the computation. This behavior is general, as it can be checked on
(4) and (S). Only the "convex part" of N, here O.7/r1 + 1/r2 + O.S/rA s

taken 1nto account ; (a fuzzy set F defined on an ordered domain, is convex

3

’

on 1ts support s(f) = {r,uF(r) > 0} if and only if ¥ (x,y,2) € s(F)
xSy Sz ) minCue () u e (2))) . see [3].

Again the fuzziness of B induces an uncertainty about the answer, which
1s convemently summarized by the pair of Lower and upper expectations

* . . . . .
(B (Y E (N)) ; 1t gives an idea of the variability of the answer with respect
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to the different possible Crisp interpretations of B ; this cannot be cap-

red by the single number w(N) .

N.B.&. It can be observed that £ () in (8) (as well a E,(N) in (10)) s

of the form

qQ
Z mON.)_{IN .3 (1)
) )
j=1
with m(N,) = y -y, (resp. m(N.) = bomue ) 2 1IN = ¢ and
) 1 ) ) -1 ) )
Nj = (r1,...,rj] (resp. Nj = {rj,...,rq]). m is nothing but the basic prob:

bility assignment in Shafer'sense (8], attached to the membership function

UN (see [2]). The expression (11) is still equal to

Z m*(su).ftA(u)J (12)
a
*
where m  is the basic probability assignment attached to Mg s i.e.
* A - -
m (Bu) = o-B with Bu = {b1,...,bk) and BB = {b1""’bk’bk+1}’ where
UB(b ) a and “a(bv+1) = B, 1f 3 o, a' with ¢ > o' sych that flAC)] = {[¢

k
the equality between (11) and (12) holds since re~a')+r(g'-8) = r(a-8). 7Tk

"

*
expression (12), which is also an expectation (since E;m (8&) = 1), can be

n the general case as another definition of a possible scalar answer when !

s fuzzy ; however 1t is a sinale number which in aeneral differs both from
*

E,(N) and from E (N) (e.g. for 1 = arithmetic mean). The expression (12) is

used in [1] in another application context. O

N.B.5. The approach presented here can be extended to the case where our

knowtedge of the values of attribute A are pervaded with fuzziness and wher

the bi's remain precisely known. Indeed formulas (4) and (5) can be straigh-

forwardly generalized when the rj's are fuzzy real numbers (the rj's can st
T

be computed since operations such as 'max min' or the arithmetic mean are
’

defined for fuzzy numbers). When the bi's are also fuzzily known we have te

distinguish between the items which are more or less possibly B and those uh

more or less necessarily B ; see [6,7). Then, the aoproach can be applied to

the possibility degrees and the necessity degrees separately. 8]
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