RELATIONS BETWEEN

BASES OF A FINITE GENERATING N-ARY SUBSPACE

Wang Hongxu

Dept. of Math. Benxi Education's College Benxi. China

ABSTRACT

In this paper, we study relations between bases of finite generating n-ary subspace, prove that the K-R standard basis and Yang basis of a finite generating n-ary subspace are the same, and also give a concrete method of finding out the solution of its dimension and basis.

I. FUNDAMENTAL CONCEPTS

Let fuzzy matrices $A=(a_{ij})_{m\times n}$, $B=(b_{ij})_{m\times n}$ and $k\in(0,1]$. The sum of the two fuzzy matrices, the scalar product of a number and a fuzzy matrix, and the relation " \leq " of two fuzzy matrices are definited respectively as follows:

$$A+B=(a_{ij}+b_{ij})_{m\times n}==(\max\{a_{ij},b_{ij}\})_{m\times n}$$

$$kA==(ka_{ij})_{m\times n}==(\min\{k,a_{ij}\})_{m\times n}$$

$$A \leq B \quad \text{iff} \quad \forall i,j, \quad a_{ij} \leq b_{ij}$$

The product of two fuzzy matrices $(A=(a_{ij})_{m \times s}$ and $B=(b_{ij})_{s \times n}$) is definited as follows: $A \cdot B = (c_{ij})_{m \times n} = (\sum_{k=1}^{s} a_{ik} b_{kj})_{m \times n}$

Under the addition and scalar product the set of all n-ary fuzzy row (column) vectors forms a fuzzy semilinear space, denoted by $V_n(V^n)$.

A vector set $\{A_1, \dots, A_t\} \subseteq V_n(V^n)$ is independent if and only if there is not $A_i \in \{A_1, \dots, A_t\}$ such that it is represented as a linear combination of elements of $\{A_1, \dots, A_{i-1}, \dots, A_{$

 A_{i+1}, \dots, A_t . If there is some $A_i \in \{A_1, \dots, A_t\}$ such that it is a linear combination of elements of $\{A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_t\}$, the set $\{A_1, \dots, A_t\}$ is said to be dependent. Let $\{A_1, \dots, A_t\} \subseteq S \subseteq V_n(V^n)$. If $\{A_1, \dots, A_t\}$ are independent

Let $\{A_1,\ldots,A_t\} \subseteq S \subseteq V_n(V^n)$. If $\{A_1,\ldots,A_t\}$ are independent and $\forall A \in S$ can be denoted by a linear combination of A_1,\ldots,A_t , then $\{A_1,\ldots,A_t\}$ is called an independent vector set of S.

Let $\{A_1,\ldots,A_t\}\subseteq V_n(V^n)$. The set W of all linear combination of A_1,\ldots,A_t is a subspace of $V_n(V^n)$, denoted by W== $\langle A_1,\ldots,A_t \rangle$, and W is called a generating subspace by A_1,\ldots,A_t . W is also called a finite generating subspace of $V_n(V^n)$. $\{A_1,\ldots,A_t\}$ is called a generating set of W.

In this paper, we only discussion $V_n(\textbf{V}^n)$ and its subspaces.

II. THE BASIS OF A FINITE GENERATING SUBSPACE

Definition 2.1 Let $\{A_1,\ldots,A_t\}$ be a linear independent set of a finite generating subspace W. If $W=\langle A_1,\ldots,A_t\rangle$, then $\{A_1,\ldots,A_t\}$ is called a linear independent basis of W. Definition 2.2 In a finite generating subspace W. If W can be generated by $\{A_1,\ldots,A_t\}$ and arbitrary vectors less than t of arbitrary vectors in W can not generate W, then $\{A_1,\ldots,A_t\}$ is called a minimum generating set of W, or a K-R basis of W. (K-R means Kim & Roush (1)). Definition 2.3 A K-R basis $\{A_1,\ldots,A_t\}$ of a finite generating subspace W is called a K-R standard basis of W if and only if $A_s = \sum_{k=1}^t k_{sh} A_k$ (s=1,...,t), $\forall k_s \in \{0,1\}$ then $A_s = k_{ss} A_s$. Theorem 2.1 (1) Let W be a finite generating subspace of V_n .

- (1) two K-R bases have the same cardinal number.
- (2) I has an unique K-R standard basis.

Let $\{A_{t_1}, \dots, A_{t_p}\}$ $(1 \leqslant p \leqslant s)$ subset of $\{A_1, \dots, A_s\}$. If A_{t_1} ..., A_{t_p} are linear independent and $\forall A \in \langle A_1, \dots, A_s \rangle$ can be given by a linear combinition of A_{t_1}, \dots, A_{t_p} , then $\{A_{t_1}, \dots, A_s\}$ is called a linear independent maximal set of $\langle A_1, \dots, A_s \rangle$

Definition 2.4 A linear independent maximal set of a generating set of a finite generating subspace W is called a Zha basis of the subspace (Zha means Zha Jianlu (3)). Theorem 2.2 (3) $\{A_1, \dots, A_t\}$ is a Zha basis of finite generating subspace W if and only if $\{A_1, \dots, A_t\}$ is a K-R basis of W. Theorem 2.3 Let $\{A_t, \dots, A_t\} \subseteq \{A_1, \dots, A_s\}$ (1 \leq p \leq s). $\{A_t, \dots, A_t\}$ is a linear independent basis of $\langle A_1, \dots, A_s \rangle$ if and only if $\{A_t, \dots, A_t\}$ is a Zha basis of $\langle A_1, \dots, A_s \rangle$.

III. A STANDARD BASIS OF A FINITE GENERATING SUBSPACE W

Definition 3.1 In a finite generating subspace W, for $A \in Y$, if there are B,C $\in Y$, that are non-ordered relation " \leq ", such that A=B+C, then A is called a compound vector of W, otherwise

A is called a simple vector of W.

Definition 3.2 Let W be a finite generating subspace. If (1) $W = \langle A_1, \dots, A_k \rangle$. (2) $\{A_1, \dots, A_k\}$ is a linear independent set. (3) A_1, \dots, A_k are simple vectors of W, then $\{A_1, \dots, A_k\}$ is called Yang basis of W (Yang means Yang Cailiang (2)). Theorem 3.1 In a finite generating subspace W the K-R standard basis and a Yang basis are the same.

Corollary. Let W be a finite generating subspace, then W has a unique Yang basis.

Therefore theorem I-1 (2) is also proved in another way. Theorem 3.2 Let W be a finite generating subspace. Then:

the cardinal number of a linear independent basis of Ψ

- = the cardinal number of a K-R basis of W
- = the cardinal number of a Zha basis of W
- =the cardinal number of the K-R standard basis of W
- = the cardinal number of the Yang basis of W <u>Definition 3.3</u> The cardinal number of a linear independent basis of a finite generating subspace W is called the dimension of W.

IV. SOLUTION TO A LINEAR INDEPENDENT BASIS

OF A FINITE GENERATING SUBSPACE W

Let $W = \langle A_1, \dots, A_m \rangle$ and A_1, \dots, A_m be non-zero vectors. We consider fuzzy relational equations

$$(x_1, \dots, x_{t-1}, x_{t+1}, \dots, x_m)$$

$$\begin{bmatrix} A_1 \\ \vdots \\ A_{t+1} \\ \vdots \\ A_m \end{bmatrix} = A_t, \quad (t=1, \dots, m)$$

If they have no solution , then A_1, \dots, A_m is a linear independent basis of W.

Otherwise, if some equation, say the m-th equation, has a solution, then $W=\langle A_1,\dots,A_{m-1}\rangle$. We continue to cousider the fuzzy relational equations of A_1,\dots,A_{m-1} .

Similarly, we go on with the above discusion . until k-th stop. The fuzzy ralational equations of A_1,\ldots,A_{m-k} have not solutions, then $W=\left\langle A_1,\ldots,A_{m-k}\right\rangle$, and $\left\{A_1,\ldots,A_{m-k}\right\}$ is a linear independent basis of W and the dimension of W is m-k.

Appling this procedure, we not only can find out the linear independent basis of W, but also can find out row rank $\rho_r(A)$ and the column rank $\rho_c(A)$ of fuzzy matrix A. REFERRINCE

- (1) Kim.K.H & Roush.F.W., Generalized Fuzzy Matrix, Fuzzy Sets And Systems, 4(1980), pp293--315
- (2) Vang Cailiang, On Fuzzy Figen-equations , Convegence Of Powers Of A Fuzzy Matrix And Stability Of A Fuzzy System, Fuzzy Mathematics, 4(1982), pp37--48
- (3) Zha Jianlu, The Dependent of A System Of Fuzzy Vectors And The Rank Of A Fuzzy Matrix, Fuzzy Mathematics, 4(1984) pp71-81