Zhang Yue

Section of Mathematics, Joal Mining and Civil Engineering College of Hebei, Handan city, China.

Dedicated to my wife

In this paper we introduced the concepts of the primary L-fuzzy ideal and the prime L-fuzzy ideal factor belouging to the primary L-fuzzy ideal, and proved some fundamental propositions. In particular, it gave a structural theorem of a prime L-fuzzy ideal factor belonging to a primary L-fuzzy ideal.

Keywords: Base set, Prime L-fuzzy ideal, Frimary L-fuzzy ideal.

1. Introduction

The concept of fuzzy groups was introduced by Posenfeld in [1]. Several orther authors continued the investigation of such concepts, as [2,3,4].

In [4], we defined also maximum fuzzy ideals and prime fuzzy ideals. In this paper we continue the program begun in [4], and we extend to the case of L-fuzzy sets, where L is a completely distributive lattice.

In Section 3, we introduced the concepts of the primary L-fuzzy ideal and a prime L-fuzzy ideal factor belonging to a primary L-fuzzy ideal, and prove some fundamental propositions. In particular, it gave a structural theorem of a prime L-fuzzy

ideal factor belonging to a prima L-fuzzy ideal.

2. L-fuzzy Ideals and Prime L-fuzzy Ideals

We first recall some basic concepts occurring in the papers [4], and we extend to case of L-fuzzy sets.

Throughout this paper L=(L, \leq , \wedge , V) will be a completive distributive lattice, which has the least and greatest elements, say 0 and 1, respectively. Let X be a non-empty (usual) set. An L-fuzzy set in X is a map A: X \longrightarrow L, and $F_L(X)$ will denote the set of all L-fuzzy sets in X.

It is easily seen that $F_L(X) = (F_L(X), \leq, \Lambda, V)$ is a completely distributive lattice, which has the least and greatest elements, say $\mathbf{0}$ and $\mathbf{1}$, respectively in a natural manner, where $\mathbf{0}(x)=0$, $\mathbf{1}(x)=1$ for any $x \in X$.

Definition 2.1 Let $X=(X, +, \cdot)$ be a ring, and $A \in F_L(X)$, $A \neq 0$. A is called an L-fuzzy subring of X, if A is an L-fuzzy subgroup under the binary operation $' \oplus '$ in $F_L(X)$ induced by '+' in X, and A is an L-fuzzy subgroupoid under ' $\ominus '$ in $F_L(X)$ induced by '.' in X (cf.[3]).

Definition 2.2 Let X be a ring, and $A \in F_{L}(X)$, $A \neq 0$. A will be called an L-fuzzy ideal, iff

- (1) A is an L-fuzzy subgroup of X under '@';
- (2) $10A \leq A$, $A01 \leq A$.

(cf. 3).

Now let $I_{\mathbf{L}}(X) \subseteq F_{\mathbf{L}}(X)$ be the set of all L-fuzzy ideals in X.

From Sition 2.1 Let X be a ring, $A \in \mathcal{F}_L(X)$, $A \neq 0$. Then $A \in I_L(X)$ iff the level subsets $A_{\boldsymbol{\xi}}$; for any $t \in L$, $t \leq A(0)$, is an ideal of X.

(The proof is omitted).

Definition 2.3 Let $A \in I_L(X)$, The ideals $A_{\boldsymbol{\xi}}$, for $t \in L$ and $t \leq A(0)$, are called level ideals of A.

Theorem 2.1 Let H, N be ideals of a ring X and H \leq N. Then there exists A \in I_L(X) such that

$$A_t = H$$
, $A_K = N$.

where t, k ∈ L and t ≥ k.

Proof. Let $A \in F_{\mathbf{L}}(X)$ defined by

$$A(x) = \begin{cases} k, & \text{if } x \in \mathbb{N} \setminus \mathbb{H}. \\ t, & \text{if } x \in \mathbb{H}, \\ 0, & \text{if } x \in \mathbb{X} \setminus \mathbb{N}, t, k \in \mathbb{L} \text{ and } t \ge k. \end{cases}$$

We have, for $1 \in L$,

$$A_{t} = \begin{cases} A_{o} = X, & \text{if } l = 0. \\ A_{K} = N, & \text{if } k \ge 1 \ge 0. \\ A_{t} = H, & \text{if } t \ge 1 \ge k. \\ \emptyset, & \text{if } 1 \ge 1 \ge t. \end{cases}$$

It follows that every nonempty level subset of A is an ideal of X. Hence A is an L-fuzzy ideal of X from Proposition 2.1. Clearly, A satisfies the conditions of the theorem.

Let H=N. We obtain as follows:

Corollary 2.1 Let H be any ideal of a ring X. Then there exists $A \in I_L(X)$ such that level ideal $A_t = H$, where $t \in L$.

Definition 2.4 Let A be an L-fuzzy subring of the ring X, the set

$$X_A = \{x \in X \mid A(x)=A(0)\}$$

is called a base set of A.

We have, from Proposition 2.1.

Proposition 2.2 If $A \in I_L(X)$, then the base set X_A is an ideal of X.

We will follow a convention that whenever ring X is tacitly assumed to be commutative.

Definition 2.5 Let $A \in I_L(X)$. A is called a prime L-fuzzy ideal, if for a,b $\in X$, A(ab)=A(0) implies A(a)=A(0) or A(b)=A(0), where $O \in X$ is the null element of X.

Theorem 2.2 Let $A \in I_L(X)$. Then A is a prime L-fuzzy ideal of X iff,

 X_A is a prime ideal of X.

(cf. [4]).

3. Primary L-fuzzy Ideals

Definition 3.1 Let $A \in I_L(X)$. A is called a primary L-fuzzy ideal of X, if for a,b $\in X$, A(ab)=A(0) and

 $A(a) \neq A(0)$ implies $A(b^n) = A(0)$ for some $n \in \mathbb{N}$, where $|\mathbb{N}|$ is the natural number set.

We have, from Definition 2.5 and Definition 3.1, every prime L-fuzzy ideal is all a primary L-fuzzy ideal.

Definition 3.2 Let $A, B \in I_L(X)$. B is called a factor of A, if $X_A \subseteq X_B$.

Definition 3.3 A prime L-fuzzy ideal P is called a prime L-fuzzy ideal factor belonging to primary L-fuzzy ideal Q, if

- (1) P is a factor of Q.
- (2) For $b \in X$, P(b)=P(0) iff $Q(b^n)=Q(0)$ for some $n \in \mathbb{N}$.

Theorem 3.1 Let P be a L-fuzzy subring of X and Q be a primary L-fuzzy ideal of X. If P(b)=P(0), for $b \in X$, iff $Q(b^n)=Q(0)$ for some $n \in \mathbb{N}$. Then P is a prime L-fuzzy ideal factor belonging to Q.

Proof. (1) $P \in I_L(X)$. Since $Q(b^n) = Q(0)$, i.e. $b^n \in X_Q$ and X_Q is an ideal in X from Proposition 2.2, $(xb)^n \in X_Q$ for any $x \in X$, i.e. $Q((xb)^n) = Q(0)$. Therefore $xb \in X_P$. Let $b, c \in X$ and $Q(b^m) = Q(0)$ and $Q(c^1) = Q(0)$, i.e. b^m , $c^1 \in X$. Since every term of the expansion of the binomial $(b-c)^{m+1-1}$ contains either b^m or c^1 , $(b-c)^{m+1-1} \in X_Q$. Therefore $(b-c) \in X$. We have, from Proposition 2.1, P is an L-fuzzy ideal.

- (2) We prove that P is a prime L-fuzzy ideal. Let $a,b \in X$ and P(ab)=P(0) and $P(a)\neq P(0)$. It follows that $Q((ab)^n)=Q(0)$ and $Q(a^n)\neq Q(0)$ for some n. Since Q is a primary L-fuzzy ideal, $Q(b^{nm})=Q(0)$ for some m. Therefore P(b)=P(0).
- (3) P is a factor of Q, i.e. $X_{\mathbf{Q}} \subseteq X_{\mathbf{p}}$. Since elements of $X_{\mathbf{Q}}$ have the property which some power of elements of $X_{\mathbf{Q}}$ belong to $X_{\mathbf{Q}}$.

The following Theorem will give a structural property of the prime L-fuzzy ideal factor P belonging to the primary L-fuzzy ideal Q.

Theorem 3.2 Let $P, Q \in I_L(X)$. Then every primary L-fuzzy ideal Q of X there exists a prime L-fuzzy ideal factor P, iff

- (1) P is a factor of Q.
- (2) If P(b)=P(0) for $b \in X$, then $Q(b^n)=Q(0)$ for some $n \in \mathbb{N}$.
- (3) If Q(ab)=Q(0) and $Q(a)\neq Q(0)$ for a,b $\in X$, then P(b)=P(0).

Proof. The necessity can be directly verified. Sufficiency. i) Q is a primary L-fuzzy ideal. Let $a,b \in X$ and let Q(ab)=Q(0) and $Q(a)\neq Q(0)$. We have, from conditions (2) and (3), there exists some $n \in \mathbb{N}$ such that $Q(b^n)=Q(0)$. Therefore Q is a primary L-fuzzy ideal. ii) The existence proof of P. Let P be defined as follows:

 $P(b) = \begin{cases} P(0) = t, & \text{iff } b^n \in X_Q, \ t \in L. \\ 0, & \text{iff } b^n \notin X_Q, \ 0 \in L. \end{cases}$ We have, from Theorem 2.1, $P \in I_L(X)$.

iii) P is a prime L-fuzzy ideal factor. Let $b \in X$ and P(b) = P(0). We have, from the condition (2), there exists some $n \in \mathbb{N}$ such that $Q(b^n) = Q(0)$. Now we verify that $Q(b^n) = Q(0)$ implies P(b) = P(0). Let r is

b \in X. If r=1, from the condition (1), the statement is true.Now let r>1, it follows that $Q(b^r)=Q(bb^{r-1})$ =Q(0) and $Q(b^{r-1})\neq Q(0)$, We have, from (3), P(b)=P(0). F is a prime L-fuzzy ideal factor belonging to Q

from Theorem 3.1.

the least natural number such that $Q(b^n)=Q(0)$ for

Remark. Theorem 3.2, in some particular conditions, reduces a primary L-fuzzy ideal Q which is verified, and reduces the prime L-fuzzy ideal factor P belonging to Q which is found, and point out the prime L-fuzzy ideal factor P belonging to Q to be uniquely determined by the conditions of Theorem 3.2.

Theorem 3.3 P is a prime L-fuzzy ideal factor belonging to the primary L-fuzzy ideal Q of X iff Xp is a prime ideal factor belonging to the primary ideal Xo of X.

Proof. Let P be a prime L-fuzzy ideal factor belonging to the primary L-fuzzy ideal Q, then the conditions (1), (2) and (3) of Theorem 3.2 are satisfied, iff the conditions (1) Xp is a factor

of $X_{\mathbf{Q}}$, (2) If $\mathbf{b} \in X_{\mathbf{P}}$, then $\mathbf{b}^{n} \in X_{\mathbf{Q}}$ for some $\mathbf{n} \in \mathbb{N}$, and (3) If $\mathbf{a} \mathbf{b} \in X_{\mathbf{Q}}$ and $\mathbf{a} \notin X_{\mathbf{Q}}$, then $\mathbf{b} \in X_{\mathbf{P}}$ are satisfied. Therefore $X_{\mathbf{P}}$ is a prime ideal factor belonging to the primary ideal $X_{\mathbf{Q}}$.

Theorem 3.4 If P is a prime L-fuzzy ideal factor belonging to both primary L-fuzzy ideal \mathbb{Q}_1 and \mathbb{Q}_2 of X. Then P is yet a prime L-fuzzy ideal factor belonging to the primary L-fuzzy ideal $\mathbb{Q}=\mathbb{Q}_1 \wedge \mathbb{Q}_2$ of X.

- rroof. (1) Clearly, P is a factor of Q.
- (2) Let $a,b \in X$ and let Q(ab)=Q(0) and $Q(a)\neq Q(0)$. We have at least a primary L-fuzzy ideal, and suppose Q_1 such that $Q_1(ab)=Q_1(0)$ and $Q_1(a)\neq Q_1(0)$. Therefore P(b)=P(0).
- (3) Let $\mathbf{b} \in X$ and P(b)=P(0). Since \mathbb{Q}_1 and \mathbb{Q}_2 are rimary L-fuzzy ideals of X, $\mathbb{Q}_1(b^1)=\mathbb{Q}_1(0)$ and $\mathbb{Q}_2(b^m)=\mathbb{Q}_2(0)$ for $1,m \in \mathbb{N}$. Suppose $n=\max(1,m)$, then $\mathbb{Q}_1(b^n)=\mathbb{Q}_1(0)$ and $\mathbb{Q}_2(b^n)=\mathbb{Q}_2(0)$. Therefore $\mathbb{Q}(b^n)=\mathbb{Q}(0)$. We have, from Theorem 3.2, P is yet a prime L-fuzzy ideal ideal factor belonging to the primary L-fuzzy ideal $\mathbb{Q}_1 \cap \mathbb{Q}_2$ of X.

factor belonging to all of primary L-fuzzy ideals Q_1 ,...., Q_m of X. Then P is yet a prime L-fuzzy ideal factor belonging to the primary L-fuzzy ideal A_1 ,..., A_m of X. Then P is yet a prime L-fuzzy ideal factor belonging to the primary L-fuzzy ideal A_n , of X.

- [1] A. Rosenfeld, Fuzzy groups, J. Math. Anal. 35 (1971) 512-517. Arrl.
- [2] Wang-iin Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems, 8 (1982) 133-139.
- wang-jin Liu, Operations on fuzzy ideals, [3] Fuzzy Sets and Systems, 8(1983) 31-41.
- [4] Zhang Yue and Peng Xiantu, The maximum fuzzy ideals and prime fuzzy ideals on ring, Fuzzy Mathematics,
 - 1 (1984) 115-116 (in Chinese)