Fuzzy relation equation on infinite sets

Luo Cheng-zhong

Dep. of Maths. Beijing Normal University, China

Abstract

The largest element of the solution set of a given fuzzy relation equation has been found by F. Sanchez [1], but the smallest element dose not exist. In the case of the determinate relation equations, complete consequences has been found by Wang-Pei zhvang and Yuan-Meng [2]. In the case of the fuzzy relation equations, Wang and Yuan have given a necessary and sufficient condition such that the fuzzy relation equation is solvable. In the paper[3], the reachable solution set of a fuzzy relation equation is given.

In this paper, we shall give the solution set of a fuzzy relation equation on the infinite sets.

Keywords: Fuzzy Relation Equation, Fuzzy Relation Inequality Largest Solution, Reachable Solution, Quasi-minimum

A.A necessary and sufficient condition

Let $F(U \times V) = \{ R \mid R : U \times V \stackrel{g}{\longrightarrow} L \}$ L= $\{ x \mid 0 \leqslant x \leqslant 1 \}$. R \in F(U \times V) is called a fuzzy relation from U into V.

Given a fuzzy relation equation

XoR=S (I)

where $R \in F(VXW)$, $S \in F(UXW)$ are given and $Y \in F(UXV)$ is unknown.

 $X \in F(U \times V)$ is called a solution of the fuzzy relation equation $X_0R = S$ if

$$V(y(u,v) \land R(v,w)) = S(u,w) \text{ for } \forall (u,w).$$
 (V= sup , Λ = inf)

Theorem 1. A neccessary and sufficient condition that XoR= S be solvable is that

$$\bigvee_{\mathbf{v}} \left\{ \left(\bigwedge_{\mathbf{S}(\mathbf{u}, \mathbf{w}')} (\mathbf{s}(\mathbf{u}, \mathbf{w}')) \right) \bigwedge_{\mathbf{R}(\mathbf{v}, \mathbf{w})} \mathbb{R}(\mathbf{v}, \mathbf{w}) \right\} = \mathbb{S}(\mathbf{u}, \mathbf{w}) \text{ for } \forall (\mathbf{u}, \mathbf{w}).$$

If YoR =S be solvable, then the largest element of the solution set is as follows,

$$\overline{X}(u,v) = \bigwedge_{S(u,w') < R(v,w')} \text{for } \forall (u,v)$$

(In this paper, we assume that the infimum of the empty set is 1)

B. Reachable solution set of NoP2S

Given a fuzzy relation inequality

Definition 1. $Y \in F(U \times V)$ is called the reachable solution of $X \circ R \supseteq S$ if

For V(u,w), $\exists v^*$ such that $X(u,v^*) \bigwedge R(v^*,w) \geqslant S(u,w)$.

By analogy with the fuzzy relation equation XoR = S [3], we have Theorem 2. $XoR \ge S$ has the reachable solutions if and only if $G = \left\{ g \middle| U \times W - \stackrel{g}{\longrightarrow} V \right\}$, for $\left\{ (u,w), R(g(u,w), w) \right\} > S(u,w) = \emptyset$, If $G \neq \emptyset$,

for ∀g ∈ G let

$$Xg(u,v)=V_{g(u,w')=v}(s(u,w'))$$
 for $\forall (u,v)$

(In this paper, we assume that the supremum of the empty set is o).

Then the reachable solution set of XoR⊋S is

$$\mathcal{X} = \{ x \mid x \ge x_g, g \in G \} = \bigcup_{g \in G} \{ x \mid x \ge x_g \}$$

C. Solution set of XoR2S

Defintion 2. For $\forall a,b \in L$, we define

$$a - b = \begin{cases} a-b & \text{when } a > b \\ 0 & \text{when } a \le b \end{cases}$$

Evidently it satisfies a - b & L for \(\forall a \), b & L.

Lemma 1. Suppose
$$S_t \in L$$
 teT, $E_n = \frac{1}{10^n}$ (n=1,2,...).

Then $\beta = \bigvee_{t} (s_{t})$ if and only if β satisfies

2) for
$$\forall \mathcal{E}_n$$
, $\exists t_n \in T$ such that $S_{t_n} \geq \beta - \mathcal{E}_n$.

Now we consider the fuzzy relation inequalities

$$YoR \ge S^{(n)}$$
 (n=1,2,...) (III)

Where

$$S^{(n)}(u,w) = S(u,w) \stackrel{\cdot}{\leftarrow} \mathcal{E}_n \text{ for } \forall (u,w),$$

By theorem 2, the reachable solution sets are

$$\mathcal{K}^{(n)} = \left\{ x \middle| x \geq x \varepsilon_n^{(n)}, \ \varepsilon_n \varepsilon_n \right\} = \bigcup_{\varepsilon_n \in G_n} \left\{ x \middle| x \geq x \varepsilon_n^{(n)} \right\} \qquad n = 1, 2, \dots$$

where

$$G_{n} = \left\{ g_{n} \middle| U \times W \xrightarrow{g_{n}} V, \text{ for } \forall (u,w), \mathbb{R}(g_{n}(u,w),w) \geqslant S(u,w) \xrightarrow{\cdot} \mathcal{E}_{n} \right\}$$

$$\times g_{n}^{(n)}(u,v) = \bigvee_{g_{n}(u,w')=v} (S(u,w') \xrightarrow{\cdot} \mathcal{E}_{n}) \text{ for } \forall (u,v).$$

Theorem 3. If XoR 2 S be solvable, then the solution set is

$$\mathcal{X} = \bigcap_{n=1}^{\infty} \left\{ \mathcal{X}^{(n)} \right\} = \bigcap_{n=1}^{\infty} \bigcup_{g_n \in G_n} \left\{ X \mid X \ge X g_n^{(n)} \right\}$$

Proof. a) Suppose that X is any solution of XoR2S. We have $\bigvee_{v} \big(\, X(u,v) \bigwedge R(v,w) \big) \geqslant S(u,w) \quad \text{for} \quad \forall (u,w).$

By lemma 1, we have

for $\forall \mathcal{E}_n$, $\forall (u,w)$, $\exists v_n *_{\boldsymbol{\ell}} V$ such that

$$X(u,v_n^*) \wedge R(v_n^*,w) \geqslant \bigvee_{v} (X(u,v) \wedge R(v,w)) \stackrel{\bullet}{\longrightarrow} \mathcal{E}_n \geqslant S(u,w) \stackrel{\bullet}{\longrightarrow} \mathcal{E}_n$$

Thus Y is the reachable solution of the inequalities

$$XoR \ge S^{(n)}$$
 for $\forall n$.

This means $X \in \bigcap_{n=1}^{\infty} \{x^{(n)}\}$

b) Suppose
$$X \in \bigcap_{n=1}^{\infty} \{ \mathcal{X}^{(n)} \}$$
. By $X \in \mathcal{X}^{(n)}$ $n=1,2,3,...$

we have for $\forall (u,w), \forall \mathcal{E}_n, \exists v* \epsilon V$ such that

$$y(u,v^*)/R(v^*,w)\geqslant S(u,w) \stackrel{\cdot}{-} E_n$$

 $\Rightarrow \forall (u,v), \forall \mathcal{E}_n, \ \ \bigvee_v (X(u,v) \bigwedge R(v,w)) \geqslant S(u,w) - \mathcal{E}_n$ According to lemma 1, we have

$$\bigvee_{V} (X(u,v) \land R(v,w)) \geqslant \bigvee_{n=1}^{\infty} (S(u,w) - \xi_n) = S(u,w) \quad \forall (u,w)$$

This means X•R≥S .

Q.E.D.

D. Solution set of XoR = S

The fuzzy relation equation XoR = S(I) is equivalent to the systems of the inequalities

By theorem 1, the solution set of XoR &S is

$$\overline{\mathcal{X}} = \{ x | x \in \overline{X} \}.$$

By theorem 3. the solution set of XoR 2S is

$$\mathcal{X} = \bigcap_{n=1}^{\infty} \left\{ \left| x \right| x \ge x_{\mathcal{E}_{n}}^{(n)} \right\}.$$

Hence the solution set of XoR= S is

$$\mathcal{X} = \overline{\mathcal{X}} \prod_{n=1}^{\infty} \underbrace{\bigcup_{n=1}^{\infty} \underbrace{\bigcup_{n=1}^{\infty} \underbrace{X_{\mathcal{B}_{n}}^{(n)} \subseteq X \subseteq \overline{X}}}_{(n)} \underbrace{X_{\mathcal{B}_{n}}^{(n)} \subseteq X \subseteq \overline{X}}_{(n)}.$$

Lemma 2. For $\forall g_n \in G_n$, $\{X \mid Xg_n^{(n)} \leq X \leq \overline{X}\} \neq \phi$ if and only if g_n

satisfies $g_n \in G_n * \subseteq G$ where

$$G_{n}^{*} = \left\{ \mathcal{E}_{n} \middle| U \times W \xrightarrow{\mathcal{E}_{n}} V, \text{ for } \forall (u, w), \overline{y}(u, g(v, w)) \land R(g(u, w), w) \right\}$$

$$\geqslant S(u, w) \xrightarrow{\mathcal{E}_{n}} \mathcal{E}_{n}$$

Proof. a) Suppose $g_n \in G_n$ and $\left\{ X \mid Xg_n^{(n)} \subseteq X \subseteq \overline{X} \right\} \neq \phi$.

Then we have

$$Xg_n^{(n)} \subseteq \overline{X} \implies \text{for } \forall (u,v), \ \overline{X}(u,v) \geqslant Xg_n^{(n)}(u,v)$$

$$\implies \text{for } \forall (u,w), \ \overline{X}(u,g_n(u,w)) \geqslant Xg_n^{(n)}(u,g_n(u,w))$$

$$\Rightarrow \text{ for } \forall (u,w) \quad \overline{X}(u,g_n(u,w)) \land R(g_n(u,w),w))$$

$$\geqslant Xg_n^{(n)}(u,g_n(u,w)) \land R(g_n(u,w),w) \geqslant S(u,w) \stackrel{\bullet}{-} \xi_n.$$

$$\Rightarrow \varepsilon_n \in G_n^*$$

b) Suppose $g_n \in G_n^*$, We have

for
$$\forall (u,w)$$
, $\overline{X}(u,g_n(u,w)) \land R(g_n(u,w),w) \geqslant S(u,w) \stackrel{\cdot}{\longrightarrow} \mathcal{E}_n$
 $\Rightarrow \overline{X}(u,g_n(u,w)) \geqslant S(u,w) \stackrel{\cdot}{\longrightarrow} \mathcal{E}_n$ for $\forall (u,w)$.

If for $\forall (u,v)$, $g_n(u,w')=v$ for some w' we have

$$\overline{X}(u,v) = \overline{X}(u,g_n(u,w') \geqslant S(u,w') - \xi_n$$

$$Xg_n^{(n)}(u,v) = \bigvee_{g_n(u,w')=v} (s(u,w') - \xi_n) \leqslant \overline{X}(u,v)$$

and if $g_n(u,w) \neq v$ for all $w \in W$, we have

$$y_{\mathcal{E}_{n}}^{(n)}(u,v) = \bigvee_{g_{n}(u,w')=v'} (s(u,w') \stackrel{\cdot}{-} \mathcal{E}_{n}) = 0 \leq \overline{\chi}(u,v)$$

thus for $\forall (u,v)$, $xg_n^{(n)}(u,v) \leq \overline{X}(u,v)$. We obtain $xg_n^{(n)} \subseteq \overline{y}$. This means $\{x \mid y \in n \subseteq X \mid \xi \neq 0\}$. Q.E.D.

Lemma 3. The solution set of XoR= S is

$$\mathcal{X} = \bigcap_{n=1}^{\infty} \bigcup_{g_n \in G_n^*} \left\{ x \middle| xg_n^{(n)} \in x \in \overline{x} \right\}.$$

Finally we obtain

Theorem 4. The solution set of XoR = S is

$$\mathcal{Z} = \bigcup_{f \in F} \{ x | x_f \le x \le \bar{x} \}$$

where

$$F=G_{1}^{*} \times G_{2}^{*} \times \dots \times G_{n}^{*} \times \dots$$

$$G_{n}^{*}=\left\{\mathcal{E}_{n} \middle| U \times W \xrightarrow{g_{n}} V, \text{ for } \forall (u,w), \overline{X}(u,g_{n}(u,w)) \middle\setminus R(u,w), w\right\}$$

$$\geqslant S(u,w) \xrightarrow{\bullet} \mathcal{E}_{n}\right\}.$$

for
$$\forall f = (g_1, g_2, ..., g_n, ...) \in F$$
, $(g_n \in G_n^*)$
 $Y_f(u, v) = \bigvee_{n = g_n(u, w') = v} (s(u, w') - \xi_n)$

Proof. a) Suppose that X is any solution of XoR= S. By lamma 3, we have

for
$$\forall n, \exists g_n \in G_n^*$$
, such that $Xg_n^{(n)} \subseteq X \subseteq X$

$$\Rightarrow \exists f = (g_1, g_2, \dots, g_n, \dots) \in F, (g_n \in G_n^*) \text{ such that } X \supseteq Xg_n^{(n)} \text{ for } \forall n.$$

$$\Rightarrow \text{ for } \forall (u, v), X(u, v) \geqslant V \quad (s(u, w') \stackrel{\cdot}{\longrightarrow} \mathcal{E}_n) \text{ for } \forall n.$$

$$\Rightarrow for \forall (u, v), X(u, v) \geqslant V \quad (s(u, w') \stackrel{\cdot}{\longrightarrow} \mathcal{E}_n)$$

$$\Rightarrow for \forall (u, v), X(u, v) \geqslant V \quad (s(u, w') \stackrel{\cdot}{\longrightarrow} \mathcal{E}_n)$$

Let

$$X_{f}(u,v) = \bigvee_{n} \bigvee_{g_{n}(u,w')=v} (s(u,w') - \xi_{n})$$

thus $X_f \subseteq X \subseteq \overline{X}$. This means

$$X \in \bigcup_{f \in F} \{ X \mid X_f \subseteq X \subseteq \overline{X} \}$$

b) Suppose

$$x \in \bigcup_{f \in F} \{x | x_f \subseteq x \subseteq \overline{x} \}$$

$$\Rightarrow \exists f = (g_1, g_2, \dots, g_n, \dots) \in F, (g_n \in G_n^*) \text{ such that } X_f \subseteq X \subseteq \overline{X}$$

$$\Rightarrow \text{ for } \forall (u, v), \ X(u, v) \geqslant X_f(u, v) = \bigvee_{n} \bigvee_{g_n(u, w') = V} (s(u, w') - \xi_n)$$

$$\Rightarrow \text{ for } \forall (u, v), \ \forall n, \ X(u, v) \geqslant \bigvee_{g_n(u, w') = V} (s(u, w') - \xi_n) = X_{g_n}^{(n)}(u, v)$$

$$\Rightarrow \text{ for } \forall n, \ \overline{X} \ge X \ge X_{g_n}^{(n)}$$

$$\Rightarrow X \in \bigcap_{n=1}^{\infty} \bigcup_{g_n \in G_n^*} (X_{g_n}^{(n)} \subseteq X \subseteq \overline{X})$$

By lemma 3. Y is the solution of XoR = S . Q.E.D.

 x_f is called the quasi-minimum of the fuzzy relation equation $x_{OR} = S$ associated with $f \in F$.

E. Example

We consider the fuzzy relation equation

$$(x_1, x_2, \dots, x_m, \dots) \circ \begin{pmatrix} 0.49 \\ 0.499 \\ 0.4999 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} = 0.5$$

where

$$X = (x_{1}, x_{2}, ..., x_{m_{1}}...) \in F(\{u\} \times V)$$

$$R = \begin{pmatrix} 0.49 \\ 0.499 \\ 0.4999 \\ ... \end{pmatrix} \in F(V \times \{w\})$$

$$S = 0.5 \in F(\{u\} \times \{w\})$$

$$V = \left\{ V_1, V_2, \dots, V_n, \dots \right\}$$

By theorem 1, we have

$$\overline{x}_k = \bigwedge \{\phi\} = 1$$
 k=1,2,...

thus $\bar{X} = (1, 1, 1, ...)$.

By theorem 4, we have

$$G_n^* = \left\{ k_n \middle| \quad \overline{\chi}_{\kappa_n} \wedge f_{\kappa_n} \geqslant 0.5 - \frac{1}{10^n} \right\}$$

thus

$$G_1^* = G_2^* = \{1, 2, 3, \dots\}, G_3^* = \{2, 3, 4, \dots\}, \dots,$$

$$G_n^* = \{n-1, n, n+1, \ldots\},\ldots$$

$$F = G^* X G^* X \dots X G^* X \dots$$

If we select $f=(k_1, k_2, k_3, ...)=(1,2,3,...) \in F$

thus

$$x_{f_k} = V_{n \quad k_{n}=k} (0.5 - \frac{1}{10R}) = 0.49 \cdot \cdot \cdot \cdot 9$$
 (k=1,2,...)

hence

$$X_f = (0.49, 0.499, 0.4999, ...)$$

If we select $f=(k_1, k_2, k_3, ...)=(2,2,3,4, ...) \in F$

thus

$$X_f = (0, 0.499, 0.4999, ...)$$

If we select $f=(2,2,4,4,6,6,8,8,...) \in F$

thus

 $X_{f} = (0, 0.499, 0, 0.49999, 0, 0.4999999,...).$

There exist infinite quasi-minima, but for any quasi-minimum $\mathbf{X}_{\mathbf{f}}$, there exists another quasi-minimum $\mathbf{X}_{\mathbf{f}}$, such that $\mathbf{X}_{\mathbf{f}}$, $\mathbf{X}_{\mathbf{f}}$

References

- 1 Sanchez. E: "Resolution of composite fuzzy relation equations" Infor contral V. 30. NO1. pp38—48 (1976)
- 2 Wang Peizhuang and Yuan Meng: "Relation equation and relation inequalities" Selected papers on fuzzy subsets. Beijing normal university, March 1980.
- 3 Luo Cheng-Thong: "Reachable Solution Set of a Fuzzy
 Relation Equation" Peprinted from Journal of Math. Analysis
 and Applications Vol. 103, No.3, (cct. 1984)