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In this paper, we proved in the first place the guasi——additi-~
vity of Sugeno's %\-measure. For the ?)\-measure on finite set X, we
defined the characteristic function Gy(A) of gx-measure, and its
some properties are discussed. Finally, we are to show the relation

between %\-—measure and probability measure.,
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1. ‘The quasi-additivity of g}\-—measure

Let X is a non-empty set and ﬁ is a g -algebra of subsets of X,
if set function on (X, B) &: ﬁ —> [0, 1] has the following properties:

(i) e(&) = 0, g(X) = 1;

(11) if 4, B& P, and AcB, then g(a)£ g(B);

© (44i) if An€g, and {An} is monotone, then limg(An)=g(limAn).

g is called fuzzy measure on (X, ).

If 4, Beg, AQB =&, then

g(aUB) = g(a) + JB) + &(a)-&(B) (1.1
where A & (-1, o), in this time, fuzzy measure g is called g, ~measure
on (X,ﬁ), and written ?JM

We know that for arbitrary a family of disgoint subsets{An} in
B, g\-measure is countably )\—additive fuzzy measure, that is
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g;l%\mn) A=

J}-\[ ‘n[;(l (1 AaA(An)) -] Ase

Definition 1.1. Let X be an arbitrary set, if the sequence of setis

{

9.( GAn) = (1.2)
n={

Anj in X has the following properties:

(1)‘1?An X
ndq

(ii) for every ixj, aillaj = 4.
{An} is called a partition of X.
Theorem 1,1, If {An} is a partition of X, 3)\ is a %\-—measure on
(X,8), for A% 0, then

Zﬂoj‘ﬁ[whﬁ)\mn)]: i (1.3)
nzj

Proof. Since {A.n} is a partition of X, from (1.2), we have

o0

TT [H’ A%\(An)) = TA (1.4)
n=\ ‘

We take logarithm for two sides of (1.4), it followc that

HZ:JI 203, Lirahan ) = |

(1.3) is called guasi-additivity of fy-measurce
Besides, [8 ] put forward a new propositions for A0 g ~measure

nas superadditivity; for.—le¢A <0 g}\ ~measure has subadditivity;
for )=o) & has additivity.

2., The properties of ?A——measure on finite set

In this section, X denotes finite set.
Definition 2.1, Lot X=f¥1, Tps eeeers XpQs if gi=e1({xi))€ [0,1],
g;i(¢}=0, 1=1,2; 0000..n. g say that g; is fuzzy density on X.

It is easy to show[ﬂ, for A% ps if fuzzy density gi on X

satisfies equation:
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A[W AL )-)=1 (201)

then Fuzzy density gi can generate ag)\-measure, that is, for
arbitrary ACX

-1 A2 Y
ha=x(JL, 023 -1] (2.2)
ir ?7\ is generated by gi (i=1,2,......n), we say that gi=gj_({xi})

is fuzzy distribution of &) and. Ex is a unique 9)\--measure on (Y ?{X))

Definition 2.2. If g, is fuzzy distribution of%\, we say that

n
in=T1 (423 ) -2 -1 (2.3)
is characteristic function of g)\

Theorem 2,1. If £570(i=1,2..4...0) is fuzzy distribution of? , them
Gn(A) has not different positive root; and if Gn(A) has positive
root A » g, then fi 9 a

Proof. By (2.2), w‘: get

j)\({‘X.,’Xz' ' xn} LTT(HK? )«-;]

::::G 37\”({1:.'11,‘“— ‘Xn}).‘_’ &(X):

G A)= 7\(2:5 R L §9 v g

A;o\ Q’AI’N 2
When A¥o 1 Gn(A)=0 is equivalent to

(fﬁ -'I)-MZZZ 93 + e GG, g =0 (2.0)

M-'l 41'4ﬂ'\
Ir (2.4) has two different positive roots: A,70, A, 70 , and
AL €A, then taking A' A, into (2.4) respectively, ferthmore malking
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subtraction, we get

(/\:-7\1)23 Z 34* tATAT)4E G =0 (2.5)

i A a7 hsAan 4R

o l.=l)|"4m q‘} 70, 3G 70, )\5"7@ 7o (f""z““‘"")
the left-hand side of the (2. 5) does not equal to zero, this is
contradiction from assumed A(>A270. Hence, (2.4) has nét different
positive roots, therefore, if @n(A) has positive root, it has only

one.,

Besides, we sssume that (2.4) has a positive root A>o, owing to

B2 850 3950 70

we have E:‘ 5‘ Z | s Wwhich compietes the proof.

Theorem 2.2. If 2; 70(i=1y.c.00en) is fuzzy distribution of 3\, -then
Gn(A) has not different negative root; and if @1(}\) has negative

root A 40, then ig S|

Proof. At first, we prove that Gn(A) has not different negative root.
Since Gn(A)=o is equivalent to

A= 142224, ﬂ‘fi ” Pt RGBT (2

iz A
we denote the right~hand side of (2 6) by Kn(A), we first use

induetion on n 1o prove Kp{k)>0, Ki(A)>0 when A€L-1,0),
Obviously, for n=2,
K =14A04,49:) +250%
20 = 0AAG ) 45,1409 Yo
Ki(n) =299, 70

The conclusion is trume.
Writing down

Kge (0 =Kg )+ (1+2d4a1)

we have
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Kb ) = K- (142 %g0) + g Kgd) >0
Ky =K 10 04A% ) + 2 KgA) 70

So, if the proposition ijs valid for k, it is evidently also valid
for k+i,

Hence, Kn{A) is monotonically increasing function in the interval
(~1,0), So, ¥n(A) must cross A4| Jjust once in the interval (=1,0),
that is, if Gn(A) has negative root, then it has only one.

We assume that (2.4) has a negative root A0 . Let us define a
seguence {xi}, iml,.een-1, of subsetis of X:

Zi={ % Xiao - Xn Y
Since { x,yUX1=X and {xJNX =& then in compliance with the
definition of&, we have

9,19(2,) A hH(%) =
As we asswme A\<g » which follows that
Frhiz) 71 | (247)
Parther {xz}u X’.;—. X\ and {Xg_}ﬂxf—. &y 80 Ve have

3.2y =% 13 2% % (1)

10 HHEL) >R (2.8)
then surely (2.7), (2.8), leads to

349, W) 71

Recurring and noting that Xn—‘lnfxn we will arrive finally to

G
Bt Gt tda 71
Te proof of the theorem is complete.

Theorem 2.3: Let gy¥0(i=1...n) is fussy distribution ot b »if

n
5.9, =)y o the 9, 1s probability measure on (X.7%)
Py T ’
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Proof: Let us define a sequence{Xi}, jm=1,,.0=1 Of subsets of the
set X:

Z’i :{'X«‘m LAWY

AYL -

Since {X‘}U X,= < s {x,}ﬂx‘: 6& y then in compl:lanoe

with the definition of 3)\. We have

4, +Ht3) +A%H(x) = (2.9)
Similarly, we have |

ah(x') = h *%&(22)¢331?R(Xa)' (2.10)
We obtain

4,49, %%, + (1% TG EN97.) §(Ta) =

from (2.9) and (2.10)

Recurring and noting that xn-1=1xg we will have finally to
n-i :

éﬁA 4N 2 Z": 2 q + " *Ngﬂ’z?’n =\

- [ 3 A
L= 4Lz M A3

Sinoce i 3. =1 , therefore
T
| ]

iR YRR P A
A AAY 42
Because g0, it follows that A=0 , sms,d, 1s = probability
measure on (1,7“)) , hence the eonclusion of this theorem holds.
Theorem 2.4: Lot gi¥ O(i=1...n) is fuzzy distribution of 3')\’

(1) 1£ aa (0)> O, then gA is a plausibility measure.

(i1) If G4(0)=0 then §, 1is a probability measure.

(111)1f 63(0)L O then §, is a belief function.
Proof: (i) Since q'é(o) = i?- ~1y0? vy (2.4), on(i) only pas |

ot
negative root, i.es —~]LALO o Because of [7. Theorew 6€.1.5],

3’\ is a plausibility measure.
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R n
(11) 1r q,:w):'- Zﬁ;\*?:a, then 3. 9. =] , according to Theorem
P

Azl A
2,3, 7 1is a probability measure,
{144) 1r Gr,"(o):éﬁz—} 0, by (i) and (ii), it follows, A>0,
because of [7, Theorem £.1.3], hemce g)\ is a belief function.

By Theorem 2.1, Theorem 2.2, Theorem 2.4, we have
Corollary 2.1: 9'\is a plausibility measure if and only if there

exists a wnique A g (- 1, o).

& s a belief function if and only if there exists 2 unique A€(s )

. Theorem 2.5: Characteristic fumetion Gr(A) has the following

moperties;
@) (o) =0
(1) If A & (0,00) , then we haveq"l(a)ao_
(444) 1 A& (-1, 0) s then we have (11':(0) >0
Proof: The proof is immediate,

3. The Relation Between %\—measure and
Probability Measure

n [4], Wierzchon proved that a 4 —measure produces exarmtly one
Probability measure on measurable space ( X ¥ ), But he said, that
the inverse is not true. In this section, we will prove that a
probability measure can generates a ?’\-meame.

Theorem 3.7s Let X be a nom-empty set and  be ag-algebrs of
subseds of X, if ?)\ is a &—-measure on (X’ﬁ ) and ) %, then

(1) 5" — ﬁﬂ(wﬂx) 15 a probability measure on (g §3)
Ref c142) ‘
(11) If P is a probadility megsure on (2, ) and Axp, then

dh=—%+i0+a)?
VI j}\mawe on (¥,8)
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Proof: (i) sSee [3], [4].
(i) Since P 1s a probability measure and A% 0 , then

R(@)=-K+ KO+ =

Hh(Z)=-L+i0en)PB =
we assume arbitrary 4, B& B3 , A/\B= X, then
A+ H(B) 125 ¢)-%B) = —4 + £(m)P £ 14 0en)™®
AL § txuPO) £ 2 0™ )
= -7’\* ¢ '*U?M} 118
=-%+ .;.\( 1+2 ) Plave)

= %a(AuB)
Because P is a probability measure and {(«) = _.}\+ ;{(HR)'K

is monotonically nondecreasing, obviously ?/\ is continuous., there~

fore, 3]\ is a %\-measure on{z $).

m [1], Sugeno attempt to construct a %\-measure cn the Borel
fieldﬂ of R, he wse a distribution function of prob:c..lity measure
and define a set function'\’p on every half open interval (a, b)EB

Y((&. b'l) = ——j—:'—?i—-ﬁ-——ﬁ::-g where «--[ L) & o0

and assert thatf is a&-moasu;e on(x‘g). In [1], i% is nothing
Wt %0 prove that 91\ is agk-meame on semi-ring f.—:{(q,b]:
""°°<¢lf'-b4'f°°} s yet he can not show dhat
$hey on f can be uniqual extemed to (Xﬂ} . Using Theorem 3.1,
we can introduce a&-measure on(g)ﬁ) y by a distribution
function on X=R,

Theorem 3.2: Let X=R, if h(x): R—»[0,1] with the following
properties

(1) 1f x4y, then h(x)&h(y) .

{ii) h(x) is right continuous ),/
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() fm fgx)zo, fim _
xg-wﬁ . §;+wﬂlw). 3

4hen h(x) can introduce a %\-measure on{ X, B

Proofs By [9], n(x) is a distribution function on X, hence,
4nere exist a random variable T ona probability spa.é:e( 3‘3}5‘ ”p)
his distributién function just is h(x). But, for arbitrary A€ [28
P(iE‘A ) can be unique ditermined by the distribution function of

Sy S0y h(x) can generates wnique probability measure Pon{Z, j} 3
By using Theorem 3.1 and let ’

R S Ll

where ae(‘.,’w}’_ AXD . We get a ?)\-measure on (X,B ). Thus,
the conclusion of this theorem holds.
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