SOME PROPERTIES OF & -MEASURE

Wenxiu HUA

Department of Mathematics, Huaiyin Teachers College, Jiangsu Province, China

In this paper, we proved in the first place the quasi-additivity of Sugeno's g-measure. For the g-measure on finite set X, we defined the characteristic function $G_n(\lambda)$ of g-measure, and its some properties are discussed. Finally, we are to show the relation between g-measure and probability measure.

Keywords: Fuzzy measure, Characteristic function, Plausibility measure, Belief function.

1. The quasi-additivity of 3, -measure

Let X is a non-empty set and \mathcal{B} is a σ -algebra of subsets of X, if set function on (X,\mathcal{B}) g: $\mathcal{B} \longrightarrow [0, 1]$ has the following properties:

(i) g(x) = 0, g(x) = 1;

(ii) if A, B \in B, and AcB, then $g(A) \leq g(B)$;

(iii) if $An \in \mathcal{B}$, and $\{An\}$ is monotone, then $\lim_{x \to a} (An) = g(\lim_{x \to a} An)$.

If A, B \in B, A \cap B = \otimes , then

 $g(AUB) = g(A) + g(B) + \chi g(A) \cdot g(B)$ (1.1)

where $\lambda \in (-1, \infty)$, in this time, fuzzy measure g is called g_measure on (X, \mathcal{B}) , and written \mathcal{G}_{λ} .

We know that for arbitrary a family of distoint subsets {An} in 8, g,-measure is countably \lambda-additive fuzzy measure, that is

$$g_{\lambda}(\bigcup_{n=1}^{\infty}A_{n}) = \begin{cases} \sum_{n=1}^{\infty}g_{\lambda}(A_{n}) & \lambda=0\\ \frac{1}{\lambda}\left[\prod_{n=1}^{\infty}\left(1+\lambda g_{\lambda}(A_{n})\right)-1\right] & \lambda\neq0 \end{cases}$$
(1.2)

Definition 1.1. Let X be an arbitrary set, if the sequence of sets { An} in X has the following properties:

(1)
$$UAn = X_{\S}$$

satisfies equation:

(ii) for every $i \neq j$, Ai \bigcap Aj = \emptyset .

An is called a partition of X.

Theorem 1.1. If $\{An\}$ is a partition of X, g_{λ} is a g_{λ} -measure on (X, B), for $\lambda \neq 0$, then

$$\sum_{n=1}^{\infty} \log_{i+\lambda} \left[1 + \lambda \mathcal{G}_{\lambda}(A_n) \right] = 1$$
 (1.3)

Proof. Since {An} is a partition of X, from (1.2), we have

$$\prod_{n=1}^{\infty} \left[1 + \lambda \mathcal{G}_{\lambda}(A_n) \right] = 1 + \lambda \tag{1.4}$$

We take logarithm for two sides of (1.4), it follows that

$$\sum_{n=1}^{\infty} \log_{1+\lambda} [1 + \lambda \mathcal{G}_{\lambda}(A_n)] = 1$$

(1.3) is called quasi-additivity of 3 -measure.

Bosides, [8] put forward a new proposition: for $\lambda > 0$, \mathcal{J}_{λ} -measure has superadditivity; for $-|<\lambda < 0$, \mathcal{J}_{λ} -measure has subadditivity; for $\lambda = 0$, \mathcal{J}_{0} has additivity.

2. The properties of 2 measure on finite set

In this section, X denotes finite set.

Definition 2.1. Let $X = \{x_1, x_2, \dots, x_n\}$, if $g_i = g_i(\{x_i\}) \in [0,1]$, $g_i(\emptyset) = 0$, $i = 1, 2, \dots$. We say that g_i is fuzzy density on X.

It is easy to show [7], for $X \neq 0$, if fuzzy density $G_i = 0$.

$$\frac{1}{\lambda} \left[\prod_{i=1}^{\infty} (1+\lambda \hat{\beta}_i) - 1 \right] = 1 \tag{2.1}$$

then Tuzzy density gi can generate a & -measure, that is, for arbitrary ACX

$$g_{\lambda}(A) = \frac{1}{\lambda} \left[\prod_{\lambda \in A} (1 + \lambda g_{\lambda}) - 1 \right]$$
 (2.2)

If \mathcal{G}_{λ} is generated by gi (i=1,2,....n), we say that gi=gi({x_i}) is fuzzy distribution of g_{\lambda}, and g_{\lambda} is a unique \mathcal{G}_{λ} -measure on (X \mathcal{G}_{λ}).

Definition 2.2. If g_i is fuzzy distribution of \mathcal{G}_{λ} , we say that

$$G_n(\lambda) = \prod_{i=1}^{n} (1 + \lambda g_i) - \lambda - 1$$
 (2.3)

is characteristic function of \mathcal{G}_{λ} .

Theorem 2.1. If $g_i > 0$ (i=1,2....n) is fuzzy distribution of g_{λ} , then $g_i > 0$.

Proof. By (2.2), we get

$$\frac{1}{3}(\{\chi_{1},\chi_{2},\dots,\chi_{n}\}) = \frac{1}{3}\left[\prod_{i=1}^{n}(1+\lambda_{i}^{n})-1\right] \\
= \sum_{\lambda=1}^{n}g_{\lambda} + \lambda\sum_{\lambda_{i}=1}^{n-1}\sum_{\lambda_{2}=\lambda_{i}+1}^{n}g_{\lambda_{1}}g_{\lambda_{2}} + \sum_{\lambda_{2}=1}^{n}g_{\lambda_{1}}g_{\lambda_{2}}g_{\lambda_{2}} + \sum_{\lambda_{3}=1}^{n}g_{\lambda_{3}}g_{\lambda_{3}}g_{\lambda_{3}}g_{\lambda_{3}} + \sum_{\lambda_{4}=1}^{n}g_{\lambda_{4}}g_$$

Since $g_{\lambda}(\{\chi_1,\chi_2,\dots,\chi_n\}) = g_{\lambda}(\chi) = 1$

 $G_n(\lambda) = \lambda \left(\sum_{i=1}^n g_i - 1 \right) + \lambda^2 \sum_{i=1}^{n-1} \sum_{i_2=i_1+1}^n g_i g_i + \cdots + \lambda^n g_i g_2 \cdots g_n$ When $\lambda \neq 0$, $G_n(\lambda) = 0$ is equivalent to

$$\left(\sum_{i=1}^{n}g_{i}-1\right)+\lambda\sum_{i_{1}=1}^{n-1}\sum_{i_{2}=i_{1}+1}^{n}g_{i}g_{2}+\cdots+\lambda^{n-1}g_{i}g_{2}\cdots g_{n}=0 \ (2.4)$$

If (2.4) has two different positive roots: $\lambda_{1,70}$, $\lambda_{1,70}$, and $\lambda_{1} < \lambda_{1}$, then taking λ_{1} , λ_{2} into (2.4) respectively, ferthmore making

subtraction, we get

$$(\lambda_1-\lambda_2)\sum_{i_1=1}^{n-1}\sum_{i_2=\lambda_1+1}^{n}g_{i_2}g_{i_2}+\cdots+(\lambda_i^{n-1}-\lambda_2^{n-1})g_{i_2}g_{i_2}\cdots g_n=0 \qquad (2.5)$$
 Since
$$\sum_{i_1=1}^{n-1}\sum_{i_2=\lambda_1+1}^{n}g_{i_1}g_{i_2}\gamma_0, \cdots g_{i_2}g_{i_2}\cdots g_n\gamma_0, \quad \lambda_1^{n-1}-\lambda_2^{n-1}\gamma_0 \quad (k=1,\dots,n-1)$$
 the left-hand side of the (2.5) does not equal to zero, this is contradiction from assumed $\lambda_1>\lambda_2>0$. Hence, (2.4) has not different positive roots, therefore, if $\mathfrak{g}_n(\lambda)$ has positive root, it has only one.

Besides, we assume that (2.4) has a positive root $\lambda > 0$, owing to

$$\sum_{i=1}^{n-1} \sum_{i_1=i_1+1}^{n} g_{i_1} g_{i_2} > 0, \dots, g_1 g_2 \dots g_n > 0$$

we have $\sum_{i=1}^{n} g_{i} \angle 1$, which completes the proof.

Theorem 2.2. If $g_{\lambda} > 0$ (i=1,....n) is fuzzy distribution of g_{λ} , then $Gn(\lambda)$ has not different negative root; and if $Gn(\lambda)$ has negative root $\lambda < 0$, then $\sum_{\lambda=1}^{n} g_{\lambda} > 1$.

Proof. At first, we prove that $Gn(\lambda)$ has not different negative root. Since $Gn(\lambda)=0$ is equivalent to

$$|+\lambda| = |+\lambda| \sum_{i=1}^{n} g_i + \lambda^2 \sum_{i=1}^{n-1} \sum_{i=i+1}^{n} g_i g_i + \dots + \lambda^n g_i g_2 \dots g_n \quad (2.6)$$

we denote the right-hand side of (2.6) by $Kn(\lambda)$, we first use induction on n to prove $K'_n(\lambda) > 0$, $K_n(\lambda) > 0$ when $\lambda \in (-1, 0)$.

Obviously, for n=2,

$$K_2(\lambda) = 1 + \lambda (g_1 + g_2) + \lambda^2 g_1 g_2$$

 $K'_2(\lambda) = g_1 (1 + \lambda g_2) + g_2 (1 + \lambda g_1) > 0$

 $K_2''(\lambda) = 29.9_2 \ 70$ The conclusion is true.

Writing down

$$K_{g+1}(\lambda) = K_g(\lambda) \cdot (1 + \lambda J_{g+1})$$
we have

$$K_{k+1}(\lambda) = K_{k}(\lambda) \cdot (1+\lambda g_{k+1}) + g_{k+1} \cdot K_{k}(\lambda) > 0$$

and

$$K_{k+1}''(\lambda) = K_{k}''(\lambda) \cdot (1+\lambda g_{k+1}) + 2g_{k+1} K_{k}'(\lambda) > 0$$

So, if the proposition is valid for k, it is evidently also valid for k+1.

Hence, Kn(A) is monotonically increasing function in the interval (-1,0), So, Kn(\(\lambda\) must cross \(\lambda+1\) just once in the interval (-1,0), that is, if $Gn(\lambda)$ has negative root, then it has only one.

We assume that (2.4) has a negative root \<0. Let us define a sequence {X_i}, i=1,...n-1, of subsets of X:

$$X_i = \{x_{i+1}, x_{i+2}, \dots, x_n\}$$

Since $\{x_i\}UX_1=X$ and $\{x_i\}\cap X_i=\emptyset$, then in compliance with the definition of 3, we have

As we assume \(\lambda_0\), which follows that

$$9.+9.(X.)$$
 71

Purther $\{\chi_2\} \cup \chi_2 = \chi_1$ and $\{\chi_2\} \cap \chi_2 = \chi_2$, so we have

(2.8)名+名(起) >名(X1) then surely (2.7), (2.8), leads to

 $g_1+g_2+g_4(X_2)>1$ Recurring and noting that Xn-1= χ_η we will arrive finally to

The proof of the theorem is complete.

Theorem 2.3: Let $g_{i} \neq 0$ (i=1...n) is fuzzy distribution of g_{λ} , if , then g_{λ} is probability measure on $(X, \mathcal{P}(X))$,

Proof: Let us define a sequence { Xi}, i=1...p-1 of subsets of the set X:

$$X_i = \{ x_{i+1}, x_{i+2}, \dots, x_n \}$$

Since $\{x_i\} \bigcup X_i = X$, $\{x_i\} \cap X_i = X$, then in compliance with the definition of X_i . We have

$$g_1 + g_2(\underline{x}_1) + \lambda g_1 g_2(\underline{x}_1) = 1 \tag{2.9}$$

Similarly, we have

$$g_{\lambda}(X_1) = g_2 + g_{\lambda}(X_2) + \lambda g_2 g_{\lambda}(X_2)$$
 (2.10)

We obtain

from (2.9) and (2.10)

Recurring and noting that In-1= X, we will have finally to

$$\sum_{i=1}^{n} g_{i} + \lambda \sum_{i_{1}=1}^{n-1} \sum_{i_{2}=i_{1}+1}^{n} g_{i_{2}} g_{i_{2}} + \cdots + \lambda^{n} g_{i_{2}} g_{i_{2}} \cdots g_{n} = 1$$

Since $\sum_{k=1}^{n} g_k = 1$, therefore

$$\lambda = \frac{1}{\lambda_{1}} \sum_{i=1}^{n} g_{i}g_{i} + \cdots + \lambda_{n}g_{i}g_{2} \cdots g_{n} = 0$$

Because $g_{i} \neq 0$, it follows that $\lambda = 0$, thus, g_{i} is a probability measure on $(X, \mathcal{P}(x))$, hence the conclusion of this theorem holds. Theorem 2.4: Let $g_{i} \neq 0 (i=1...n)$ is fuzzy distribution of g_{i} ,

- (i) If GA (0)>0, then \mathcal{J}_{λ} is a plausibility measure.
- (ii) If $G_{n}^{h}(0)=0$ then g_{k} is a probability measure.
- (iii) If $G_{\Lambda}^{\prime}(0) < 0$ then g_{λ} is a belief function.

Proof: (i) Since $G'_n(o) = \sum_{i=1}^n g_i - 1 > 0$, by (2.4), $G_n(\lambda)$ only has

negative root, i.e. $-|\angle\lambda\angle 0|$. Because of [7. Theorem 6.1.5], 2λ is a plausibility measure.

(11) If $G'_n(0) = \sum_{i=1}^n g_i - 1 = 0$, then $\sum_{i=1}^n g_i = 1$, according to Theorem

2.3, g_{i} is a probability measure.

(iii) If $G_{i}(0) = \sum_{i=1}^{N} g_{i-1} < 0$, by (i) and (ii), it follows. $\lambda > 0$, because of [7, Theorem 6.1.3], hence 3 is a belief function.

By Theorem 2.1, Theorem 2.2, Theorem 2.4, we have Corollary 2.1: 9 is a plausibility measure if and only if there exists a unique $\lambda \in (-1,0)$.

g is a belief function if and only if there exists a unique $\lambda \in (0,\infty)$

Theorem 2.5: Characteristic function $Gn(\lambda)$ has the following properties:

- $(1) \operatorname{Gn}(0) = 0$
- (41) If $\lambda \in (0, \infty)$, then we have $G'_n(0) \subset 0$.
- (111) If $\lambda \in (-1,0)$, then we have $G'_n(0) > 0$. Proof: The proof is immediate.

3. The Relation Between 2 -measure and Probability Measure

In [4], Wierzchon proved that a & -measure produces exactly one probability measure on measurable space (), But he said, that the inverse is not true. In this section, we will prove that a probability measure can generates a 3 -measure.

Theorem 3.1: Let X be a non-empty set and B be a g-algebra of subsets of X, if g_{λ} is a g_{λ} -measure on (X, \mathcal{G}) and $\lambda \neq s$, then

- (1) $g^{*} = \frac{\log(1+\lambda g_{\lambda})}{\log(1+\lambda)}$ is a probability measure on (\mathbf{Z}, \mathbf{B}) .
- (ii) If P is a probability measure on (X, B) and $\lambda \mp o$, then

is a g-measure on (Z, B)

Proof: (i) See [3], [4].

(ii) Since P is a probability measure and $\lambda \neq 0$, then

$$g_{\lambda}(x) = -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda)^{P(a)} = 0.$$

$$g_{\lambda}(x) = -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda)^{P(a)} = 1.$$

we assume arbitrary A, $B \in \mathcal{B}$, $A \cap B = \alpha$, then

$$3(A) + 3(B) + \lambda 3(A) \cdot 3(B) = -\frac{1}{2} + \frac{1}{2}(H\lambda)^{P(A)} - \frac{1}{2} + \frac{1}{2}(H\lambda)^{P(B)} + \lambda [-\frac{1}{2} + \frac{1}{2}(H\lambda)^{P(A)}][-\frac{1}{2} + \frac{1}{2}(H\lambda)^{P(B)}]$$

$$= -\frac{1}{2} + \frac{1}{2}(H\lambda)^{P(A)} + P(B)$$

$$= -\frac{1}{2} + \frac{1}{2}(H\lambda)^{P(A\cup B)}$$

$$= \frac{1}{2}(A\cup B)$$

Because P is a probability measure and $f(x) = -\frac{1}{\lambda} + \frac{1}{\lambda} (1+\lambda)^{\chi}$ is monotonically nondecreasing, obviously g_{λ} is continuous. therefore, g_{λ} is a g_{λ} -measure on (χ, g_{λ}) .

In [1], Sugeno attempt to construct a g-measure on the Borel field g of R, he use a distribution function of probability measure and define a set function ψ on every half open interval $(a, b) \in g$

$$\Psi((a,b)) = \frac{h(a) - h(b)}{1 + \lambda h(a)} \quad \text{where } -| \angle \lambda \angle \infty$$

and assert that \forall is a \mathcal{J} -measure on (X,\mathcal{B}) . In [1], it is nothing but to prove that \mathcal{J}_{λ} is a \mathcal{J}_{λ} -measure on semi-ring $\mathcal{J}_{\lambda} = \{(Q,b): -\infty < Q \leq b < +\infty\}$, yet he can not show that the \forall on \mathcal{J}_{λ} can be uniqual extende to $(X,\mathcal{B}_{\lambda})$. Using Theorem 3.1, we can introduce a \mathcal{J}_{λ} -measure on $(X,\mathcal{B}_{\lambda})$, by a distribution function on X=R.

Theorem 3.2: Let X=R, if h(x): R \rightarrow [0,1] with the following properties

- (i) If $x \leq y$, then $h(x) \leq h(y)$
- (ii) h(x) is right continuous;

(111) $\lim_{x\to -\infty} h(x)=0$, $\lim_{x\to +\infty} h(x)=1$. then h(x) can introduce a \mathcal{X} -measure on (X, B).

Proof: By [9], h(x) is a distribution function on X, hence, there exist a random variable \mathfrak{Z} on a probability space $(\mathfrak{A}, \mathfrak{B}, \mathfrak{P})$. his distribution function just is h(x). But, for arbitrary A & &. P(3EA) can be unique ditermined by the distribution function of 3, So, h(x) can generates unique probability measure P on (2,8) By using Theorem 3.1 and let

名=-女+女(1+入)P

where $\lambda \in (-1, \infty)$, $\lambda \neq 0$. We get a g_{λ} -neasure on (X, \mathcal{B}) . Thus, the conclusion of this theorem holds.

References

- [1] Sugeno.M. Theory of Fuzzy Integrals and Its Applications, Ph.D. Ttesis, Tokyo. Inst. of Technol. Tokyo. 1974.
- [2] Dubois.D and Prade.H, Fuzzy Sets and Systems: Theory and Application, Academic Press, New York, 1980.
- [3] R.Kruse, A note on λ -Additive Fuzzy Measure, Fuzzy sets and Systems, 8(1982), 219-222.
- [4] S.T.Wierzchon, An Algorithm for Indentification of Fuzzy Measure, Fuzzy Sets and Systems, 9(1983), 67-71.
- [5] K.Leszczynski, P.Penczek and W.Grochulski, Sugeno's Fuszy Measure and Clustering, Fuszy Sets and Systems, 15(1985), 147-158.
- [6] Weng Pei-zhuang; Theory of Fuzzy Sets and Its Applications, Shanghai Science technology Press, 1983.
- [7] Zhang Wenxiu; Foundations of Fuzzy Mathematics, Xian Jiaotong University Press, 1984.
- [8] Wang Zhenyuan, The Structure and Quasi-Probability of g.-measure, Journal of Hebei University, 1(1983).
- [9] Yan Shijian, Foundations of Probability, Science Press, 1982.