AN EXTENDING THEOREM FOR FUZZY P-MEASURES

Krzysztof PIASECKI

Department of Mathematics, Academy of Economy, ul. Marchlewskiego 146/150, 60-967 Poznań, Poland.

1. Preliminary notions

Let $\mathfrak{G}\subset\mathbb{F}(\mathfrak{Q})$ be any soft fuzzy 5-algebra i.e. fuzzy \mathfrak{G} -algebra (see [1]) uncontaining the fuzzy subset $\begin{bmatrix} 1\\2\end{bmatrix}_{\mathfrak{Q}}$: $\mathfrak{Q}\to\{\frac{1}{2}\}$, [6]. The fuzzy P-measure on \mathfrak{G} is defined as mapping $\mathfrak{p}:\mathfrak{G}\to[0,1]$. such that:

- for any mes

$$p(\mu \vee (1 - \mu)) = 1; (1.1)$$

- if $\{\mu_n\}$ is a finite or an infinite sequence of pairwise W-separated fuzzy subsets (i.e. $\mu_i \le 1 - \mu_j$ for each pair (i,j) which i \ne j [4]) then

$$p\left(\sup_{\mathbf{n}}\left\{\mu_{\mathbf{n}}\right\}\right) = \sum_{\mathbf{n}}p(\mu_{\mathbf{n}}) \cdot [6] \tag{1.2}$$

Among others things, any fuzzy P-measure p on 6 is nondecreasing function fulfilling the following conditions:

$$\forall \mu \in \mathcal{E}$$
 $\mu \leqslant \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega} \Rightarrow p(\mu) = 0, \qquad (1.3)$

$$\forall (\mu, \nu) \in \mathbb{G}^2$$
 $p(\mu \vee \nu) + p(\mu \wedge \nu) = p(\mu) + p(\nu), (1.4)$

$$P(\mu \vee (1-3)) = 0 \Rightarrow P(\mu) = P(3), \quad (1.5)$$

$$\forall \{\mu_{\mathbf{n}}\} \in \sigma^{\mathbf{N}} \qquad \{\mu_{\mathbf{n}}\} \uparrow \mu \in \sigma \Rightarrow \{p(\mu_{\mathbf{n}})\} \uparrow p \qquad \bullet \tag{1.6}$$

Moreover, we have: $p(\mu \wedge \nu) = p(\mu)$ for all $\mu \in \mathcal{F}$ iff $p(\nu)$ [6]. The triplet (Ω, \mathcal{E}, p) is called a soft fuzzy probability space.

2. Generalization of ordinary extending theorems.

Let $\widehat{\mathbb{G}}_{\leq |F(\Omega)|}$ be any soft fuzzy algebra i.e. fuzzy algebra uncontaining $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega}$. Cover of fuzzy subset μ is defined as the set $C(\mu) = \{\{\mu_n\} \mid \mu \leq \sup_{\Omega} \{\mu_n\}, \forall n \in \mathbb{N}: \mu_n \in \widehat{\mathbb{G}}\}$ for each $\mu \in F(\Omega)$. Furthermore, the mapping $p : \widehat{\mathbb{G}} \to [0,1]$ is a fuzzyP-measure defined on $\widehat{\mathbb{G}}$, only. Theorem 2.1: The outer measure p^* , defined by

$$\forall \mu \in \mathbb{F}(\Omega) \qquad p'(\mu) = \inf \{ \sum_{n} p(\mu_n) : \{\mu_n\} \in C(\mu) \}, (2.1)$$

is the unique extension of p to the smallest soft fuzzy 5-algebra containing $\widehat{\mathbf{c}}$, which is a fuzzy P-measure. [3] Assume now, that $\Omega = \overline{\mathbf{R}} = [-\infty, +\infty]$. Let β_{S} be infinite Borel family defined in [5]. Each fuzzy subset μ in β_{S} can be described by the following unions:

$$\mu = \mu_1 = \sup_{\mathbf{n}} \left\{ \phi \left[\mathbf{a_n}, \mathbf{b_n} \right] \right\}$$
 (2.2)

or

$$\mu = \mu_2 = \sup_{\mathbf{n}} \{ \psi \left[\mathbf{a}_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}} \right] \} \vee \psi \left[\mathbf{a}_{\mathbf{0}}, +\infty \right]$$
 (2.3)

where the mappings $\varphi[a,b[:\overline{R} \to [0,1]]$ and $\varphi[a,+\infty]:$ $\overline{R} \to [0,1]$ are fuzzy intervals defined, for each pair $(a,b)\in \overline{R}^2$, in [5]. For this case, we have Theorem 5.2: For each function $F:\overline{R} \to [0,1]$, fulfilling the conditions:

$$F(-\infty) = 0$$
 (2.4), $F(+\infty) = 1$ (2.5),

$$\forall (x,y) \in \mathbb{R}^2 \qquad x \leqslant y \Rightarrow F(x) \leqslant F(y) \qquad (2.6),$$

there exists the unique fuzzy P-measure $p:\beta_S \to [0,1]$ having the following properties:

$$p\left(\left[+\infty,+\infty\right]\right)=0, \qquad (2.8)$$

$$\forall x \in \overline{\mathbb{R}} \qquad p \left([-\infty, x [] = F(x) \cdot [8] \right) \qquad (2.9)$$

Definition 2.1: The projection $\widetilde{\mathbb{N}}_{S}$ on $2^{\mathbb{R}}$ is a mapping $\widetilde{\mathbb{N}}_{S}$ $\widetilde{\mathbb{N}}_{S}$ $\widetilde{\mathbb{N}}_{S}$ $\widetilde{\mathbb{N}}_{S}$ $\widetilde{\mathbb{N}}_{S}$ $\widetilde{\mathbb{N}}_{S}$

defined by the identity

$$\Pi_{S}(\mu) = \begin{cases}
U \left[a_{n}, b_{n} \right] \setminus \{-\infty\} & \mu = \mu_{1} \\
U \left[a_{n}, b_{n} \right] \cup \left[a_{0}, +\infty\right] \setminus \{+\infty\} & \mu = \mu_{2}, \\
U \left[a_{n}, b_{n} \right] \cup \left[a_{0}, +\infty\right] \setminus \{+\infty\} & \mu = \mu_{2}, \\
U \left[a_{n}, b_{n} \right] \cup \left[a_{n}, b_$$

where μ_1 and μ_2 are described respectively by (2.2) or (2.3). [7]

Lemma 2.1: The projection $\overline{\mathbb{N}}_{S}$ satisfies the following properties:

$$\forall \{\mu_n\} \in \beta_s^{IN}$$
 $\exists \{\mu_n\} = \bigcup_n \exists \{\mu_n\} \}$, (2.11)

$$\nabla (\mu, \nu) \in \beta_5^2$$
 $\mu \leqslant 1 - \nu \Rightarrow \Pi_5(\mu) \cap \Pi_5(\nu) = \emptyset$, (2.12)

$$\forall \mu \in \beta_S$$
 $\Pi_S(\mu \vee (1 - \mu)) = \mathbb{R} \cdot [7]$ (2.13)

Theorem 2.3: Let $F: \mathbb{R} \to [0,1]$ be any function fulfilling (2.4), (2.5), (2.6) and (2.7). Then the mapping $p^*: \beta_5 \to [0,1]$, defined by

$$\forall \mu \in \beta_{\varsigma}$$
 · $p^*(\mu) = \int_{\Pi_{\varsigma}(\mu)} dF$ (2.14)

is the unique fuzzy P-measure on β_5 , which satisfies (2.8) and (2.9).

Proof: The conditions (2.1) and (2.2) are immediate consequence of the Lemma 5.1. Also, the property (2.9) is self-evident. Since $(\varphi + \infty, +\infty) = \emptyset$, the condition (2.8) holds, too. The uniqueness follows from the Theorem 2.2.

The last result are more general than analogous thesis presented in [8]. All above theorems are generalization of well-known theorems from ordinary theory of probability spaces, for the fuzzy case.

3. Remarks on fuzzy spaces

Let $\mathcal{C} = \mathcal{C}(\Omega)$ be any soft fuzzy \mathcal{C} -algebra. Since $\mathcal{C}_{\Omega} \in \mathcal{C}$, the crisp set Ω can be decomposed as union

$$\Omega = \Omega_1 \cup \Omega_2 , \qquad (3.1)$$

where $\Omega_1 \neq \emptyset$, $\Omega_1 \cap \Omega_2 = \emptyset$ and $\Omega_2 \in \mathbb{C}$ (the mapping Ω_2 is the mambership function of crisp set Ω_2). Obviously, Ω_2 can be empty. Let Ω_1 be a fixed crisp subset in Ω_2 satisfying (3.1).

Definition 3.1: The mapping

$$\mathbb{K}(\cdot,\Omega_1):\mathbb{E}(\Omega)\to 2^{\Omega_1}$$

defined by the identity

$$\forall \mu \in \mathbb{F}(\Omega)$$
 $\mathbb{K}(\mu, \Omega_1) = \{\omega : \omega \in \Omega_1, \mu(\omega) > \frac{1}{2}\},$ (3.2) is called a support of nonemptiness in Ω_1 . [7]

Definition 3.2: The mapping

$$K^*(\cdot, \mathfrak{N}_1): \mathbb{F}(\mathfrak{N}) \rightarrow 2^{\mathfrak{N}_1}$$

given by

$$\forall \mu \in \mathbb{F}(\Omega) \qquad \mathbb{K}^*(\mu, \Omega_1) = \{\omega : \omega \in \Omega_1, \mu(\omega) = \frac{1}{2}\}, (3.3)$$

is called a support of ill-defined elements in $\Omega_{\rm 1}$. [7] Let us define the following families of crisp subsets:

$$\mathbb{K}(\Phi,\Omega_1) = \left\{A: A \in 2^{\Omega_1}, \exists \mu \in \Phi : A = \mathbb{K}(\mu,\Omega_1) \text{ or } A = \mathbb{L}(\mu,\Omega_1)\right\}, \tag{3.4}$$

 $\mathbb{K}^*(\P, \Omega_1) = \{A: A \in 2^{\Omega_1}, \exists \mu \in \P : A = \mathbb{K}^*(\mu, \Omega_1)\}$ (3.5) for any $\Phi \subset \mathbb{F}(\Omega)$, where the mapping $\mathbb{E}(\cdot, \Omega_1): \mathbb{F}(\Omega) \to 2^{\Omega_1}$ is given by the identity

Theorem 3.1: If \mathbf{G} is a soft fuzzy \mathbf{G} -algebra in $\mathbf{\Omega}$ then $\mathbf{K}(\mathbf{G}, \mathbf{\Omega}_1)$ is a crisp \mathbf{G} -algebra in $\mathbf{\Omega}_1$. Moreover, then we have $\mathbf{K}^*(\mathbf{G}, \mathbf{\Omega}_1) \subset \mathbf{K}(\mathbf{G}, \mathbf{\Omega}_1)$ and

$$\nabla \left\{ \mu_{n} \right\} \in \left(\mathbb{F} \left(\Omega \right) \right)^{M} \qquad \mathbb{K} \left(\sup_{n} \left\{ \mu_{n} \right\}, \Omega_{1} \right) = \bigcup_{n} \mathbb{K} \left(\mu_{n}, \Omega_{1} \right) , \qquad (3.7)$$

$$\bigvee \{\mu_{n}\} \in (\mathbb{F}(\Omega))^{\mathbb{N}} \qquad \mathbb{L} \left(\sup_{n} \{\mu_{n}\}, \Omega_{1}\right) = \bigcup_{n} \mathbb{L}(\mu_{n}, \Omega_{1}) , \qquad (3.8)$$

$$\forall \mu \in \mathbb{F}(\Omega) \qquad \mathbb{K}(1-\mu_1,\Omega_1) = \Omega_1 \setminus \mathbb{L}(\mu_1,\Omega_1) , \qquad (3.9)$$

$$\forall \mu \in \mathbb{F}(\Omega)$$
 $L(1-\mu,\Omega_1) = \Omega_1 \setminus K(\mu,\Omega_1) \cdot [7]$ (3.10)

(3.11)

On the other side, let us define the family of fuzzy subsets. $\mathbb{E}(S,\Omega) = \left\{ \mu : \mu \in \mathbb{F}(\Omega), \exists \ (A,B) \in S^2, \ A \subset B, \ A = \mathbb{K}(\mu,\Omega_1) \right\}$ and B=L(\mu,\Omega_1)\right\}

for any $S \subset 2^{\Omega^1}$. Then we have $\Phi \subset \mathbb{E}(\mathbb{K}(\Phi, \Omega_1), \Omega)$ for each $\Phi \subset \mathbb{F}(\Omega)$ and:

Theorem 3.2: If S is a crisp 5-algebra in Ω_1 , then $\mathbb{E}(S,\Omega)$ is a fuzzy 5-algebra in Ω . Furthermore, $\mathbb{E}(S,\Omega)$.

Proof: The identities (3.7), (3.8), (3.9) and (3.10) imply that $\mathbb{E}(S,\Omega)$ is closed under complementation and denumerable union. Also, $\mathbb{K}(\mathbb{I}_{\Omega},\Omega_1) = \mathbb{L}(\mathbb{I}_{\Omega},\Omega_1) = \mathbb{L}(\mathbb{I}_{\Omega},\Omega_1$

Moreover, we defined the following subfamily of $\mathbb{E}(\mathbb{K}(\Phi, \Omega_1), \Omega)$ $\mathbb{E}^*(\Phi, \Omega, \Omega_1) = \left\{ \mu \in \mathbb{E}(\mathbb{K}(\Phi, \Omega_1), \Omega) : \exists A \in \mathbb{K}^*(\Phi, \Omega_1), \dots \times (3.12) \right\}$

for any $\bullet \in \mathbb{F}(\Omega)$.

Theorem 3.3: If G is a soft fuzzy G-algebra in Ω , then $E^*(G,\Omega,\Omega_1)$ is a fuzzy G-algebra.

Proof: Since $K^*(1-\mu,\Omega_1)=K^*(\mu,\Omega_1)$ for each $\mu\in F(\Omega)$, $E^*(G,\Omega,\Omega_1)$ is closed under complementation. Let $\{\mu_n\}\in E^*(G,\Omega,\Omega_1)$. Then, according with the Theorems 3.1 and 3.2, $\sup\{\mu_n\}\in E(K(G,\Omega_1),\Omega)$. Furthermore, then we have $K^*(\sup\{\mu_n\},\Omega_1)=\bigcap K^*(\mu_n,\Omega_1)\subset K^*(\mu_1,\Omega_1)$.

So, there exists such subset $A \in \mathbb{K}^*(G, \Omega_1)$ that $\mathbb{K}(\sup_{n} \{\mu_n\}, \Omega_1) \subset A$. Thus $\mathbb{E}^*(G, \Omega_1, \Omega_1)$ is closed under denumerable union. Since $\mathbb{K}(\mathbb{Q}_{\Omega}, \Omega_1) = \mathbb{K}^*(\mathbb{Q}_{\Omega}, \Omega_1) = \emptyset \in \mathbb{K}^*(G, \Omega_1)$, the family $\mathbb{E}^*(G, \Omega_1, \Omega_1)$ is a fuzzy G-algebra. Last of all, we define family of fuzzy subsets

 $c(\Phi,\Omega_1) = \{\mu, \mu \in \mathbb{F}(\Omega), \exists \nu \in \Phi : \mu = \nu \wedge \nu \Omega_1\}$ (3.13)

for any $\Phi \subset \mathbb{F}(\Omega)$. Note that $c(\mathfrak{F}, \Omega_{\eta}) \subset \mathfrak{F}$ and $c(\mathfrak{F}, \Omega_{\eta})$

is a fuzzy 5-algebra in Ω_{-4} .

Theorem 3.4: If \mathfrak{H} is such soft fuzzy \mathfrak{H} -algebra that $\mathfrak{C}(\mathfrak{H}, \mathfrak{N}_1)$ is a soft fuzzy \mathfrak{H} -algebra in \mathfrak{N}_1 then $\mathfrak{E}^*(\mathfrak{H}, \mathfrak{N}, \mathfrak{N}_1)$ is a soft fuzzy \mathfrak{H} -algebra.

Proof: Suppose that $\begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega} \in \mathbb{E}^*(5, \Omega, \Omega_1)$. Therefore, $\mathbb{K}^*(\begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega}, \Omega_1) = \Omega_1 \in \mathbb{K}^*(5, \Omega_1)$. So, $\begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega} \wedge \times \Omega_1 \in \mathbb{C}(5, \Omega_1)$.

Futhermore, we observe that

$$\mathbb{K}(\boldsymbol{\varepsilon}, \boldsymbol{\Omega}_1) = \mathbb{K}(\boldsymbol{c}(\boldsymbol{\varepsilon}, \boldsymbol{\Omega}_1), \boldsymbol{\Omega}_1) , \qquad (3.14)$$

$$\mathbb{K}^*(\sigma,\Omega_1) = \mathbb{K}^*(c(\sigma,\Omega_1),\Omega_1) \quad (3.15)$$

4. Fuzzy extension

Let (Ω, σ, p) be such soft fuzzy probability spaces that:

- there exists such crisp subset Ω_1 that the set Ω_2 can be decomposed as union $\Omega = \Omega_1 \cup \Omega_2$ according with (3.1) and $c(G,\Omega_1)$ is a soft fuzzy G-algebra in Ω_1 ;
- the fuzzy P-measure p on 5 satisfies

$$p\left(X_{\Omega_{i}}\right) = 0 \quad . \tag{4.1}$$

Lemma 4.1: The mapping $p_c: c(6, \Omega_1) \rightarrow [0,1]$, given by

$$A^{he} = b^{c}(h \vee \chi U^{r}) = b(h) \qquad (4.5)$$

is explicitly defined fuzzy P-measure on $c(\mathbf{6},\Omega_1)$.

Proof: Let $\because \in c(\sigma,\Omega_1)$. Assume that there exists

 $(\mu_1, \mu_2) \in \mathbb{S}^2$ such that $\mu_1 \neq \mu_2$ and $\Im = \mu_1 \wedge \chi_{\Omega_1} = \mu_2 \wedge \chi_{\Omega_1}$. Using (1.2), we get

+ $b(h^{1} \vee \chi U^{r}) = b(h^{1} \vee \chi U^{1}) = b(h^{2} \vee \chi U^{1}) = b(h^{2} \vee \chi U^{1}) + b(h^{1} \vee \chi U^{1}) = b(h^{1} \vee \chi U^{1} \wedge \chi U^{1}) = b(h^{1} \vee \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1}) + b(h^{1} \wedge \chi U^{1}) = b(h^{1} \wedge \chi U^{1$

 $p(\mu_2 \wedge \chi_{2_i}) = p(\mu_i)$ So, the mapping p_c is given explicitly. The conditions (1.1)

and (1.2) are self-evident.

Lemma 4.2: If pair $(\mu, \nu) \in 5^2$ satisfies

$$K(\mu, \Omega_1) = L(\nabla, \Omega_1) , \qquad (4.3)$$

or
$$L(\mu, \Omega_1) = L(\nu, \Omega_1)$$
, (4.4)

or
$$K(\mu,\Omega_1) = K(\hat{\cdot},\Omega_1)$$
 (4.5)

then $p(\mu) = p(3)$.

Proof: If the pair (μ, \hat{r}) satisfies (4.3) or (4.4) then we have $\Im(\omega) \Im \mu(\omega) \wedge \Im(\omega) \Im \frac{1}{2}$ for each $\omega \in \Omega_1$ such that $\mu(\omega) \vee \Im(\omega) \Im \frac{1}{2}$. Moreover, the condition (4.5) implies that $\Im(\omega) \Im \frac{1}{2}$ and $\mu(\omega) \wedge \Im(\omega) \Im \frac{1}{2}$ for such $\omega \in \Omega_1$ that $\mu(\omega) \vee (\omega) \Im \frac{1}{2}$. So, for each pair $(\mu, \hat{r}) \in \mathbb{R}^2$ fulfilling (4.3) or (4.4) or (4.5), we get:

$$((\mu \wedge \chi_{\Omega}) \wedge (\partial \vee \chi_{\Omega})) \vee (1 - \partial \vee \chi_{\Omega}) \leqslant \begin{bmatrix} \frac{1}{2} \end{bmatrix}^{\mathcal{L}}.$$

$$(\langle x \rangle \times \chi_{\Omega_1}) \wedge (1 - (\langle \mu \rangle \times \chi_{\Omega_1}) \wedge (\langle x \rangle \times \chi_{\Omega_1})) \leq \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega_1}.$$

This, along with (1.3), (1.4) and (1.5), gives

$$P_{c}(\mathcal{I} \wedge \mathcal{X}_{\Omega_{1}}) = P_{c}((\mu \wedge \mathcal{X}_{\Omega_{1}}) + P_{c}(\mathcal{I} \wedge \mathcal{X}_{\Omega_{1}})) = P_{c}((\mu \wedge \mathcal{X}_{\Omega_{1}}) \wedge (\mathcal{I} \wedge \mathcal{X}_{\Omega_{1}}))$$

$$\dot{\mathbf{p}}_{\mathbf{c}}$$
 = $\mathbf{p}_{\mathbf{c}}$

The result, together with the Lemma 4.1, shows $p(\mu) = p_c(\mu \wedge \chi_n) = p_c(x \wedge \chi_{\Omega_n}) =$

Lemma 4.3: If pair (\mu, \varphi) 6 5 2 fulfils

$$K(\mu,\Omega_1) \subset K(0,\Omega_1)$$
 (4.6)

or
$$L(\mu, \Omega_1) \subset L(0, \Omega_1)$$
 (4.7)

or
$$L(\mu, \Omega_1) \subset K(>, \Omega_1)$$
 (4.8)

or
$$K(\mu, \Omega_1) \subset L(3, \Omega_1)$$
 (4.9)

then $p(\mu) \leqslant p(\varsigma)$.

Proof: For any pair $(\mu, \nu) \in \mathbb{S}^2$ we have:

- if (4.6) or (4.8) then $K(\mu\nu\nu,\Omega_1) = K(\nu,\Omega_1)$,
- if (4.7) then $L(\mu\nu\nu,\Omega_1) = L(\nu,\Omega_1)$.

So, for these cases, in agreement with the Lemma 4.2, we get $p(3) = p(\mu \vee 3) p(\mu)$. Furthermore, the condition (4.9) implies $\mu(\omega) \wedge 3(\omega) > \frac{1}{2}$ for each $\omega \in \Omega_1$ such that $\mu(\omega) > \frac{1}{2}$. Thus

 $(\mu \wedge \chi_{\Omega_{1}}) \wedge (1 - (\mu \wedge \chi_{\Omega_{1}}) \wedge (\nu \wedge \chi_{\Omega_{1}})) \leq \begin{bmatrix} \frac{1}{2} \end{bmatrix}_{\Omega} .$ This, along with (1.3), (1.5) and (4.2) shows that $p(\mu) = p_{c}(\mu \wedge \chi_{\Omega_{1}}) = p_{c}((\mu \wedge \chi_{\Omega_{1}}) \wedge (\nu \wedge \chi_{\Omega_{1}})) \leq p_{c}(\nu \wedge \chi_{\Omega_{1}}) = p(\nu) .$ Theorem 4.1: The mapping $P: \mathbb{K}(6, \Omega_{1}) \rightarrow [0, 1]$ defined by $\forall \text{Ae}(\mathbb{K}(5, \Omega_{1})) \quad P(A) = \begin{cases} p(\nu) & A = \mathbb{K}(\nu, \Omega_{1}) \\ p(\mu) & A = \mathbb{L}(\mu, \Omega_{1}) \end{cases} ,$ (4.10)

is usual probability measure on $\mathbb{K}(\mathbf{5},\Omega_1)$ satisfying the condition

$$\forall A \in \mathbb{K}^*(5, \Omega_1) \qquad P(A) = 0. \qquad (4.11)$$

Proof: The Lemma 4.2 shows that the mapping P is explicitly defined by (4.10). Since $\Omega_1 = L(\mu\nu(1-\mu))$, Ω_1 for any $\mu\in \mathbb{F}$, by (1.1) we get $P(\Omega_1)=1$.

Let $\{A_n\}$ be sequence of pairwise disjoint subsets in $\mathbb{K}(\mathfrak{F},\mathfrak{Q}_1)$. Then there exists such sequence $\{\mu_n\}\in\mathfrak{F}^{\mathbb{N}}$ that $A_n=\mathbb{K}(\mu_n,\mathfrak{Q}_1)$ or $A_n=\mathbb{L}(\mu_n,\mathfrak{Q}_1)$ for each positive integer n. Note that the fuzzy subsets $\{\mu_n\}$ are mutually W-separated. The Lemma 4.3 implies that the mapping P is nondecreasing. Therefore, by (3.7), (3.8) and (1.2), we obtain

$$\sum_{n} P(A_{n}) = \sum_{n} p(\mu_{n}) = p(\sup_{n} \{\mu_{n}\}) = P(K(\sup_{n} \{\mu_{n}\}, \Omega_{1})) =$$

$$= P(\bigcup_{n} K(\mu_{n}, \Omega_{1})) \leqslant P(\bigcup_{n} A_{n}) \leqslant P(\bigcup_{n} L(\mu_{n}, \Omega_{1})) =$$

 $= P(L(\sup_{n} \{\mu_n\}, \Omega_1)) = P(\sup_{n} \{\mu_n\}) = \sum_{n} P(\mu_n) = \sum_{n} P(\Lambda_n).$

So, P is an usual probability measure on $\mathbb{K}(5,\Omega_1)$. Also the condition (4.11) holds because

 $P(K*(\mu,\Omega_1)) = P(L(\mu,\Omega_1) \setminus K(\mu,\Omega_1)) = P(L(\mu,\Omega_1)) - P(K(\mu,\Omega_1)) = P($

for all µ 65 .

Theorem 4.2: Let P: $\mathbb{K}(5,\Omega_1) \to [0,1]$ be an usual probability measure on $\mathbb{K}(5,\Omega_1)$ fulfilling (4.11). Then the mapping $\overline{p}: 5 \to [0,1]$, defined by means of the identity

 $\overline{p}(\mu) = P(K(\mu, \Omega_1)) \tag{4.12}$

for all $\mu \in G$, is a fuzzy P-measure on G which satisfies (4.1). [7]

Theorem 4.3: The mapping $\bar{p}: \mathbb{E}^*(\mathcal{F}, \Omega, \Omega_1) \to [0,1]$, defined by (4.10) and (4.12) for each $\mu \in \mathbb{E}^*(\mathcal{F}, \Omega, \Omega_1)$, is the unique extension of fuzzy P-measure p on \mathcal{F} to $\mathbb{E}^*(\mathcal{F}, \Omega, \Omega_1)$, which is a fuzzy P-measure on $\mathbb{E}^*(\mathcal{F}, \Omega, \Omega_1)$.

Proof: Since the mapping P is nondecreasing, the condition (4.11) holds for all $A \in \mathbb{K}^*(\mathbb{E}^*(5,\Omega,\Omega_1),\Omega_1)$. So, according to the Theorem 4.2 the mapping \overline{p} is a fuzzy P-measure on $\mathbb{E}^*(5,\Omega,\Omega_1)$ because $\mathbb{K}(\mathbb{E}^*(5,\Omega,\Omega_1),\Omega_1) = \mathbb{K}(5,\Omega_1)$. Moreover, we have

 $\bar{p}(\mu) = P(K(\mu, \Omega_1)) = p(\mu)$

for each µe5.

Let $\widetilde{p}: \mathbb{E}^*(G, \Omega, \Omega_1) \rightarrow [0,1]$ be any fuzzy P-measure on $\mathbb{E}^*(G, \Omega, \Omega_1)$ fulfilling $\widetilde{p}(\mu) = p(\mu)$ for each $\mu \in S$. Then we get $\widetilde{p}(\mu) = \widetilde{P}(K(\mu, \Omega_1))$, where the mapping $\widetilde{P}: K(\mathbb{E}^*(G, \Omega, \Omega_1), \Omega_1) \rightarrow [0,1]$ is given by

$$\widetilde{P}(A) = \begin{cases} \widetilde{P}(\mu) & A = K(\mu, \Omega_1) \\ \widetilde{P}(x) & A = L(x, \Omega_1) \end{cases}$$

for each $A \in \mathbb{K} (\mathbb{E}^*(\mathfrak{T}, \mathfrak{Q}, \mathfrak{Q}_1), \mathfrak{Q}_1)$. Also we have $\widetilde{P}(A) = 0$ for each $A \in \mathbb{K}^*(\mathbb{E}^*(\mathfrak{T}, \mathfrak{Q}, \mathfrak{Q}_1), \mathfrak{Q}_1)$. If $\mu \in \mathbb{E}^*(\mathfrak{T}, \mathfrak{Q}, \mathfrak{Q}_1)$, then there exists such fuzzy subset $0 \in \mathfrak{T}$ that $\mathbb{K}(\mu, \mathfrak{Q}_1) = \mathbb{K}(\mathfrak{T}, \mathfrak{Q}_1)$ or $\mathbb{K}(\mu, \mathfrak{Q}_1) = \mathbb{L}(\mathfrak{T}, \mathfrak{Q}_1)$. Therefore, we get $\widetilde{P}(\mu) = \widetilde{P}(\mathbb{K}(\mu, \mathfrak{Q}_1)) = \widetilde{P}(\mathbb{K}(\mathfrak{T}, \mathfrak{Q}_1)) = \widetilde{P}(\mathbb{K}(\mathfrak{T}, \mathfrak{Q}_1)) = \mathbb{P}(\mathbb{K}(\mathfrak{T}, \mathfrak{Q}_1)) = \mathbb{P}(\mathbb{K}(\mathfrak{T}, \mathfrak{Q}_1)) = \mathbb{P}(\mathbb{K}(\mu, \mathfrak{Q}_1)) = \mathbb{P}(\mathbb{K}$

or

 $\widetilde{p}(\mu) = \widetilde{P}(K(\mu, \Omega_1)) = \widetilde{P}(L(\mathcal{P}, \Omega_1)) = \widetilde{p}(\mathcal{P}) = P(L(\mathcal{P}, \Omega_1)) = P(K(\mu, \Omega_1)) = \widetilde{p}(\mu) \cdot \blacksquare$

The Theorem 3.2 says that each fuzzy P-measure on \mathfrak{G} cannot be extended to $\mathbb{E}(\mathbb{K}(\mathfrak{G}, \Omega_{\mathfrak{A}}), \Omega)$. Nevertheless, for this case we have:

Theorem4.4: The mapping $\bar{p}: \mathbb{E}(\mathbb{K}(5,\Omega_1),\Omega) \to [0,1]$, defined by (4.10) and (4.12) for each $\mu \in \mathbb{E}(\mathbb{K}(5,\Omega_1),\Omega)$ is a fuzzy probability measure (in sense given by Klement at.el. [2]) on $\mathbb{E}(\mathbb{K}(5,\Omega_1),\Omega)$ i.e. the mapping \bar{p} has the following properties:

 $\overline{p}(\mathfrak{O}_{\mathfrak{D}}) = 0 \qquad (4.13) \; ; \quad p(\mathfrak{I}_{\mathfrak{D}}) = 1 \qquad (4.14)$ and (1.4), (1.6) for all fuzzy subsets in $\mathbb{E}(\mathbb{K}(\mathfrak{F},\mathfrak{R}_{\mathfrak{I}}),\mathfrak{L})$.

Proof: Since $\{\mathfrak{O}_{\mathfrak{D}},\mathfrak{I}_{\mathfrak{D}}\}\subset\mathbb{E}^*(\mathfrak{F},\mathfrak{L},\mathfrak{R}_{\mathfrak{I}})$, the conditions (4.13)
and (4.14) follow from (1.1) and (1.3). Let $(\mu, \nu)\in$ $\mathbb{E}(\mathbb{K}(\mathfrak{F},\mathfrak{R}_{\mathfrak{I}}),\mathfrak{L})^2 \quad \text{Then, by (4.12) we get}$ $\overline{p}(\mu \vee \nu) = \mathbb{P}(\mathbb{K}(\mu \vee \nu,\mathfrak{R}_{\mathfrak{I}})) = \mathbb{P}(\mathbb{K}(\mu,\mathfrak{R}_{\mathfrak{I}})\cup\mathbb{K}(\nu,\mathfrak{R}_{\mathfrak{I}})) =$ $= \mathbb{P}(\mathbb{K}(\mu,\mathfrak{R}_{\mathfrak{I}})) + \mathbb{P}(\mathbb{K}(\nu,\mathfrak{R}_{\mathfrak{I}})) - \mathbb{P}(\mathbb{K}(\mu,\mathfrak{R}_{\mathfrak{I}})\cap\mathbb{K}(\nu,\mathfrak{R}_{\mathfrak{I}})) =$ $= \overline{p}(\mu) + \overline{p}(\nu) - \mathbb{P}(\mathbb{K}(\mu \wedge \nu,\mathfrak{R}_{\mathfrak{I}})) = \overline{p}(\mu) + \overline{p}(\nu) - \overline{p}(\mu \wedge \nu) .$

So, the condition (1.4) holds. Moreover, if $\{\mu_n\}$ is such non-decreasing sequence of fuzzy subsets in $\mathbb{E}(\mathbb{K}(\mathbb{F},\Omega_1),\Omega)$ that $\{\mu_n\}1$ $\mu\in\mathbb{E}(\mathbb{K}(\mathbb{F},\Omega_1),\Omega)$, then $\{\mathbb{K}(\mu_n,\Omega_1)\}1$ $\uparrow\mathbb{K}(\mu,\Omega_1)$. Thus

 $\left\{ \bar{p}(\mu_n) \right\} = \left\{ P(K(\mu_n, \Omega_1)) \right\} \uparrow P(K(\mu_n, \Omega_1)) = \bar{p}(\mu) . \blacksquare$

Theorem 4.5: Let P: $\mathbb{K}(\mathfrak{G}, \mathfrak{Q}_1) \to [0,1]$ be an usual probability measure on $\mathbb{K}(\mathfrak{G}, \mathfrak{Q}_1)$ fulfilling (4.11). Then the mapping $\widehat{\mathfrak{P}}$: $\mathfrak{G} \to [0,1]$, defined by the identity

 $\widehat{\mathbf{p}}(\mu) = \mathbf{P}(\mathbf{L}(\mu, \Omega_1)) \tag{4.15}$

for all $\mu \in \mathcal{F}$, is a fuzzy P-measure on \mathcal{F} which satisfies (4.1) and

 $\forall \mu \in \sigma \qquad \widehat{p}(\mu) = \overline{p}(\mu) \quad . \quad [7] \qquad (4.16)$

Theorem 4.6: The mapping \hat{p} : $\mathbb{E}^*(G,\Omega,\Omega_1) \rightarrow [0,1]$, defined by (4.10) and (4.15) for each $\mu \in \mathbb{E}^*(G,\Omega,\Omega_1)$, is the unique extension of fuzzy P-measure p on G to $\mathbb{E}^*(G,\Omega,\Omega_1)$ which is a fuzzy P-measure on $\mathbb{E}^*(G,\Omega,\Omega_1)$.

Proof: By analogous way, as the proof of the Theorem 4.3, we show that \hat{p} is a fuzzy P-measure on $\mathbb{E}^*(G, \Omega, \Omega_1)$ which is a extension of p. The uniqueness follows from the Theorem 4.3. Theorem 4.7: The mapping $\hat{p}\colon \mathbb{E}(\mathbb{K}(G,\Omega_1),\Omega) \to [0,1]$, defined by (4.10) and (4.15) for each $\mu \in \mathbb{E}(\mathbb{K}(G,\Omega_1),\Omega)$, is a fuzzy probability measure on $\mathbb{E}(\mathbb{K}(G,\Omega_1),\Omega)$.

Proof: By analogous way, as the Theorem 4.4.

Remark: Comparise the mappings \bar{p} and \bar{p} . Since $\bar{p}(\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega}) = P(K(\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega}, \Omega_1)) = P(\emptyset) = 0 < 1 = P(\Omega_1) = P(L(\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega}, \Omega_1)) = \bar{p}(\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega})$, \bar{p} and \bar{p} are different fuzzy probability measure on $E(K(\bar{p}, \Omega_1), \Omega_1)$. Moreover, the monotonicity of \bar{p}

implies that $\overline{p}(\mu) \leq \widehat{p}(\mu)$ for all $\mu \in \mathbb{E}(\mathbb{K}(\mathcal{F}, \Omega_1), \Omega)$. Therefore, the mappings \overline{p} and \widehat{p} are called respectively lover extension of p and higher extension of p. Since $\overline{b} = \mathbb{E}^{\dagger}(\overline{b}, \Omega, \Omega) = \mathbb{E}(\mathbb{K}(\overline{b}, \Omega), \Omega)$ for the crisp case, presented above results are commonplace for this case. In fuzzy case, the lover and higher extension are necessary for investigation of distributions of fuzzy random variables.

References

- [1] S.Khalili, Fuzzy Measures and Mappings, J.Math.Anal.Appl. 68 (1979), 92-99.
- [2] E.P.Klement, R.Lowen, W.Schwychla, Fuzzy Probability Measures, Fuzzy Sets and Systems 5 (1981), 21-30.
- [3] K.Piasecki, Extension of Fuzzy P-Measure, BUSEFAL 19 (1984), 26-41.
- [4] K.Piasecki, New Concept of Separated Fuzzy Subsets, Proc. the Polish Symposium on Interval and Fuzzy Mathematics (1985), 193-195.
- [5] K.Piasecki, On Interval Defined by Fuzzy Preference Relation, BUSEFAL 22 (1985), 58-67.
- [6] K.Piasecki, Probability of Fuzzy Events Defined Denumerable Additivity Measure, Fuzzy Sets and Systems 17 (1985), 271-284.
- [7] K.Piasecki, On One Relationship Between Classical Probability
 Measure and Fuzzy P-Measure, BUSEFAL 24, 29-40, (1985)
- [8] K.Piasecki, Fuzzy P-Measure on the Real Line, Fuzzy Sets and Systems, to appear.