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1 Preliminary notioms

Let 6c Fsy) be any soft fuzzy 6=-algebra i.e. fuzzy

G ~algebra (see [[1]) uncontaining the fuzzy subset ﬂ % ]] s
ﬂ-—){%} » [6] + The fuzzy P-measure on G  is defiped agz
mapping p:&—> [0,1] « such thats | |

- for any poeb

Plevil =) =13 (1e1)
- if i"hn} is a finite or an infinite sequence of pairwise

Wegeparated fuzzy subsets (i.e. v <1 = jy for each

pair (i,j) whiech izJ ([4]) then
plaw {pp}) =2 ppy) « [€] | (12)

Among others thimgs, any fuzzy P-measure p omn 6 is norde-

creasipg function fulfilling the following conditionss

Ve ® | p<[2].® rm=o, (1.3)

V(5P Ve 62 PLRVY) + P(AY) = DUR) + PV, Ueth)

V(w)"\:eﬁa‘ P(RAll =9 =0 p(p) =p(M s (1e5)
ol 4 |

Vi) o (baltwes s lpalte o (ue)
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Moreover, we have: p(mwnav») = p(p) for all ,»Gb" iff
p(v)  [6]. The triplet (SL,6,p) is called a soft fuzzy pro-

*

bability space.
2, Generalization of ordinary extending theorems.

Let GclF(SL) be apy soft fuzzy algebra i.e, fuszy algebra
uncontaining [[% ]&. Cover of fuzay subset . is defined as

the set  C(p) = {{pyl p £ sup gy o 7 me Ws g a€ %Y
for each p- € B(SL) o Furthermore, the mapping D3 G- E0,1j
ig a fuzzyP-measure defined om & , omlye \

Theorem 213 The outer measure p¥* \, defined by
Vo) P = inff Z:n Pk )¢ gl CCRIY 5(207)

is the unique extensiom off p to the smallest soft fuzzy C=al=
gebra containing & , which is a fuzzy P-measure. [3])
Assume now, that Sl=R =[~oc0,+00] o Let B be infinite
Borel family defined im [5] ¢ Each fuzzy subset M in P
can be described by the following unions:

o= e = s {@ Couv, C} | (2:2)
or - '

o= P"Z = sgp{xg Cagsby E}\/\{)'an,-too] (2+3)

where the mappings uPEa,b C s ER— [{o0,1] and \PEa,-r oc] “
R—-> [0,1] are fuzsy intervals defined, for each pair (a,b)¢ 71_12, |
in [5] « For this case, we have ’

Theorem 5.2¢ For each function Fi ®- (0,1] , fulfilling the

conditionss ‘ : —
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F(=o0c) = O (244) F(+e2) = 1 (245),
Y (xy5)¢ B X<y 2 F(x)IC F() (2.6),
{1 B {z,frx 2 Fup)r P " (2.9).

there exists the unique fuzzy P-measure p: ’\53-9 [0,1] having
the following properties:

p ([+o04+400]) =0 , | . (2.8)
Y xR P ([~w0yx[)=F(x) . EB] (2o9)
Definition 241%¢ The projection (\Tg on 2 R is a mapping )
‘T\'g: ’}Bg—-» 2 B ’
defined by the identity

(V) Cagov L\ {-oe] A
R (2410)

V Copeb Lo Lager e D\ {roc} o =y

where M , and W, are described respectively by (2.2) or

(2+3)e [7] «
Lemma 2,1t The projectiocm "ﬁg satisfies the following proper=

Te(p=

tiess , . ‘

Y kat € bg Telomw {pa}) =V T+ (2e1)
W (V) € P 1= D () ale(® =g, (2012)
Y e o o Mlpvb-p)) = . 7] (2.13)

Theorem 2,%: Iet F: I—ﬁ——ﬁ[:o,‘l] be any function fulfilling (2.4),
(2¢5)y (246) and (2.7)e Then the mapping p*s Pe™ (e,1] , de-
fined by _
Vf“ s ?’g . p¥(N) a’_f dr ’ (2.14)
is the unique fuzzy P-measure on ‘¥>§. s, which satisfies (2.8)
and (2+9)e
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Proof: The conditions'(z.ﬂ and (2.2) are immediate consequence
of the Lemma 5.1. Also, the property (2.9) is self-evident. £ince
(ﬁg(‘? C+o¢,+00])) = § , the condition (2.8 ) holds, too. The umiqu-
eness follows from the Theorem 2.2 ol

The last result are more genmeral than analogous thesis presented

in [8] . All above theorems are gemeralization of welleknown the-

‘orems from ordinary the\ory of probability spaces, for the fuzzy

cane,

3+ Remarks omn fugzy spaces

Y

Let § e P(SL) be any soft fuzzy G-algebra, Since 0Og¢ &

. the crisp set SU can be desomposed as union ‘
4.{2&3‘-‘05.40‘5}..2 ’ (3°’l)

-where ,$L1¢¢,S?_.,|A.SL2=-.¢ and 151266' ( the mapping

’X_Q_ is the mambership function of crisp set 33 2\ o Obvious
2 - ‘

sly, SL o can be empty. Let St o be a fixed crisp subset im
. satistying (3.1). |
Definition 3.,1: The mapping
K(- ,SL,) s B(SL) = 2%,
defined by the ldentity -

V fheﬂ“(ﬂ) K(q,92) = w w.eﬂ.,‘, plw) > %}, (‘3;2)

is called a support of nonemptiness in S 1 e [71
Definition %¢2: The mapping

K*(« 4§%,) : F(SL)Y—=> 28k, ,

given by ‘
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7 je () KF (o8l = fwi we S, peor= 3, (3.3)
is called a support of ill-defined elements in SL 4  [71]
Let us define the following families of crisp subsets:

K($ ,521) = {A‘: Ae 2_'8'1,3}»6 P :a= K(w,ﬂ,‘) or

| o A=L(p,R2)} , (3e4)
BY (3,0 ={asae 2 ,Tped sa=xp, 0} (3.5)
a1

for any H cF(SL) , where the mapping L(-,92,) : F(SL)—>2
is given by the identity | )

WV pelP(SL) L, S2) = K(u 5000 KM ,5Y,) (3.6)
Theorem 3,1t If 6 is a soft fuzzy G-algebra in ST then
K(&,8,) is a crisp G-algebra in SL, o Moreover, then we
have K*(6 ,8L,) c K(S ,S\.,l) and

7/ {p.n}e (e ()N K ( sgp {p.n},ﬂq\ =er K(P-ns-ﬂ-q) ’ (3.7)
v AT T 0 TE15) Ll Usup (g} Rq) =V Ll 55 (3.8)
v e F () K -\ ,9.1) zn,‘\ L(p ,nﬂ-n,]) ’ (509)
Y pe F(&L) L =p ,8,) =S\ K ,8) o [7] (3.10)
On the other side, let us define the family of fuzz;y subsets,
B(8,80) = {p.s we P(R),3 (A,B)e s, ACB, A=K(p ,4)

and B=L(p,S10)}  (3.11)
for any sc2®! | Then we have P cE(K($ 12q) s S2) for
each ¢ « F(SL) and: )

Theorem 3%.2: If S 1is a crisp G-algebra in SL 4 o them
E(S,R) 1is a fuzzy © ~algebra in 52 . Furthermore,

[ 2 ]]&e B(S,R)
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Proof: The identities (3.7), (3.8), ( 3.9) and ( 3.10) imply that
B(S,SL) is closed under complementation and denumerable union.

Also, k(0,829 = L{lg,, = L( [[ % ]S?. ,9_1) =52,65 and

(3] 09 =des .m
Moreover:h we defined the following subfamily of B (K(® ,Sl,l) ySL)
B*( , S, Q) = {pe BUKE,Q,),80) 1 F A K¥ 3,97,

K*(p 1R 4) © A} (3.12)
for any & € F(SY) .
Theorem 3.3: If ®  is a soft fuzzy G-algebra in S) , them
E*( S ,8,52,) is a fuzzy G -algebra,
Proof: Since K¥Ul = ,51 ) = K*(pn,R ) foreach n c¢B(L)
EB¥(s ,Sl,.SL,Q is closed under complementation. let {'J\- n} c
c EX6 ,0,8L,) o Then, according with the Theorems 3.1 and 3e2,
sup Y n"i"‘ E(K(6 ,52.,]),51{) o Furthermore, then we have
Erisie {p oSl = Q K* (g SL )€ K (pgn St y) o

S0, there exists such subset A€ K*(6,S.,) that
K ( sup {'L n‘\ ,.Q.,]) c A o Thus EY(6 ,SR.,Q,,]) is closed under
n .

denumerable uniom. Since K(0gQ ,SL4) = K*(0g ,,) = PeEME )
the family B*(6,5,5,) is a fuzzy 6 ~algebra.m

Last of all, we defime family of Tfuzzy subsets

0(4",9.1) = 5\\\!- st FLR) 4,3 Ve $ rkz\’l\x,g},ﬂ} (313)
for any P F(S2) . Note that ¢(§,51,)c® and c¢(§,5,)
is a fuzzy G =-algebra inm SL , . '

Theorem 3.4: If & is such soft fuzzy & =-algebra that ¢(¥ '9“’1’)
is a soft fuzzy Ge-algebra inm Q 4 ‘thenm B™*6,8,%,) isa

soft fuzzy G=algebrae
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Proof: Suppose that u ]I e EX& , S1 ) « Therefore,

k[ 3] Q0 =R BERY . s, [2]on¥sae
& G(G,-ﬂ1 N

Futhermcre, we observe that

K(S’,R,l) ':..'lK(CLG—,SL,]) ’S?-,]‘) ’ (5‘14)
‘K'K{)—Qp‘-q) = K"(c (6 ’521) gﬂq) . (3-15)

4o Fuzzy extension

let (5 ,6,p) be such soft fuzzy probability spaces that:
- there exists such crisp subset ;ﬂ.a that the set &L  can
be decomposed as union Sl = .Q.- U Qa according with (3.1)
and  ¢(§ ,RQ,) is a soft fuzzy G-algebra in g
- the fuzzy P-masure p on G satisfies
p(Xg) =0 . (4e1)
Lemma 4.1: The mapping P,s c(6,8L,)—> 0,1] , siven by

Veb Polp A XQ)) =P\ (4e2)
is explicitly defined fuzzy P-measure on c(6,8,)
Proof: Let ~ ec(&,Q.,) o Assume that there exists

. 2 , D X -
(@ 1fp)€E € such that  p, F#p o, and V= pgn Xg, =
= o A X,‘Q“‘ o Using (1e2), we get
Do (9) = Blp) = p(pqnlxg v X)) =plpAXe ) +
+ p(}"’l'\ .X'-S}—..\ =P k“.»‘ A 'Xrg_) = p(pon ’)('.QJ = P(\*g’\x‘_g_)"‘
+p(paAXg )= Plra)
So, the mapping P, is given explicitly. The conditvions (1e1)
and (1.2) are self-evident. [
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Lemma 4.2: If pair (g ,V)¢ 52 satisfies

K(P’Q ) = L(\,’,Q_,‘) ’ (4e3 )
or L(psS2q) =L(,22,) (4e4)
or K(P. ,52.1) = K(+ 'Rr‘) (4'5)

them Dplp) = p() .
Proof: If the pair (rk,\") satisfies (4.3) or (4.4) then we
have \'2(@)7,};0,:)/\\)(‘.::))% for each LQC‘S?.,‘ such that
r\,(v:)v () )% . Moreover, the condition (#¢5) implies that
'\}(\,\;)>% and M (=) A 9&”7% for such we.ﬁ?_,\ that
\*’b": y v (<) >% s S0, for each pair (P> v e G’ fulfilling
(4e3) or (4e#) or (4e5\, we get:

((e A st)v(\"\%ﬂ))/\(’l-wxa [[ ]]pu

(\':/\191)1\('1 - (pm A),RZ/\(-O,\ X'Q_'))\ [2n& .
This, along with (1.3), (1.4) and (1.5), gives :
Po (3 A Xq ) =P (LpnXg WEAXQ)) =

= Pc(y. N T \"' P (»Alﬁ) - Pg (H»/\"‘ﬂ YA DAXQ ‘)

Pe = Pq .
The result, together with the Lemma 441, shows p(p) =p,(pHn 731.)::
=p (VA Kg) =2 .
Lemma 4.3 If pair (je,¥)€ § &  fulfils

K(psSl) e K ,8,) (46)
or L{k,R,)€ L »S1.) (4.7)
or L(p,,)c KLY ' $2,) (4.8)
or K(p, ) € LU, (4:9)

then p (RIS PY)



Proof: For any pair (m,V) ¢ §2 we have:

~ if (446) or (4.8) themn K (pvv,8 ) =K(¥,48 ),

- if (47) then L (pvv,fl,) = L(¥,5 ) .
So, for these cases, in agreement with the Lemma 4.2, we get
p(¥) = p(pv 9)) p(pm) o Furthermore, the comdition (4.9) implies
P AV Yy for each well, such that p(w)Dp
Thus

(}LA%Q_\A("“(FAXQ)I\(VAXQ» [ ]]
This, along with (1.3), (1.5) and (4.2) shows that p (m) =
= 2 (kA X )= Bl A KR IA(VAXG NE 2 (VA XR)= 2() -8
Theorem 4+1: The mapping Pt K(6 ,SL,)—~> [[0,1] defined by

PWY) A= K(V,5)

Y aclK(T ":‘}-d) P(A) .1{ tho)

pPip) A = L(k,52,)

is usual probability measure on I[K(G ,Q_,‘) satisfying the con=
aitiom

W Ae IK¥5 ,Q ) P(A) = 0 . (4e11)
Proof: The Lemma 4.2 shows that the mapping P is explicitly
defined by (4.10). Since ‘S?"’l = L(pvi1 =p)) ,9..:1) for any
’LeG' , by (1.1) we get  P(L,) =1 .

let {An} be sequence of pairwise disjoint subsets in

KR(& ,.'E.}_,l) » Then there exists such sequence {rx,n\c- 6%  that
Ay = K('Ln,_'ﬂ.,l) or A = L(w,,,;) for each positive integer
n .« Note that the fuzzy subsets {'Ln} are mutually Weseparated.

The Iemma 4% implies that the mapping P is nondecreasing.

Therefore, by (3.7), (%.8) and (1.2), we obtain
Zn P(A,) = Z;Z Pl ) = 2 sup fi ) = P ( sgp{y» 2y
:P\\é K 509K P\U A )KE U L{p s59) =



43

:P(L\s:;p{}tn.’] ,S}-,‘)) :_—-p(sgp{p.n\) =§_}p(r[ o) =:3P(An) .

So, P is an usual probability measure on K(S ,8,) o Also
the conditiom (4.11) holds because
FR* (e »R4) = PEOL QYN K, B9) = P(L(p,St)) - PE(p,S )=
=plp) =plp) =0
for all peb& oW
Theorem 4.2: Let Pt K(§ 45 )= [0,1] Dve an usual probability
measure on [K(& ,Sl,]) fulfilling (4.11)e Then the mapping
7:6 — [0,17] , defined by meaps of the identity

B(p) = BIE( <) (412)
for all i €6 , is a fuszy P-measure on G  which satisfies
) I v |
Theorem 4.3: The mapping Ds B*(G ,3,0 ) - {o0,1] , defined by
(4o10)and (4412) for each e B®¥(G ,5,5,) , is the unique ex=
tension of fuzzy P-measure p on G to E¥G $SL ,511) ’
which is a fuzzy P-measure on [E¥(S ,5L,R,)
Proof: Since the mapping P  is nondecreasing, the condition
\4.11) holds for all AcK*(E¥(6,%,81) ,S ) « So, according
to the Theorem 4.2 the mapping D 1s a fuzzy P-measure on
EB*(S ,51,5%,) because K{E*(E ,9,50,) , ) =K (5,9,) o
Moreover, we have |
BLp) = PR, S0)) = p(p)
for each p € 15} .

Let P: E*(E ,SL,9,)—> (0,1] be any fuzzy P-measure on
E¥(6 ,51,Q,) fulfilling Blp) = D) for each peS
Then we get PIpM) = f(K(’L:-,S}.,l)) , where the mapping
P: K (EY(E ,52,9) ,80 )~ [0,1] is given by
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|

it

B0 e
T (V) A= LY ,R)

for each AeK(EBY(5 ,.,R,) ,8%,) « Also we have Pa) = ©
for each AeK*\ [B¥(G ,8L,5,) s ) e If pe E*(6 ,2,0.,)
then there exists such fuzzy subset ~¢0 that K(p,82,) =
= K(+,R,) eor K(F’ﬂq) = L(V,8,) o Therefore, we get
) = BE(p,2)) = FE(v,,))
= P(K(p ,.Q,}')) = D)
or
T () = PE(p,2) = B ,R)) =50 =p (V)
= P(K{p,8L,)) =D (p) « 0

The Theorem 3.2 says that each fuzzy P-measure on & cannot be

L]

it

extended to [E(K(E ,S?.,‘) SL) . Nevertheless, for this case

we have:

Theorem4.4: The mapping P: E(K(E ,ﬂ,]) ,sL)-> [0,1] , defimed

T = p(¥) = PEY L))

P(L{v,2))

by (4.10) and (4.12] for each |eB(K(E,,) , L) is a fuzzy

probability measure { in sense given by Klement at.el. [2]) on

BE(K(G ,S,) +850) i.€s the mapping P has the following pro=-

perties:

PlOy) =0 (413) ;3 p(ig) =1 (o4

and (Te4), {16\ for all fuzzy subsets in IE(\K(B',SL‘),« L)
Proof: Since {0g ,T1o)c EY(G,SLyS,) , the conditions (4413)
and (4,14) follow from (1.71) and (1.3} Let (Q V) &

JE (K (6,8, ,SL))2 . Then, by (412) we get

Plpwvy) = PIK(pvv ,5?41)) = P(K(p ,9-,]')\} K(~> ,9.1')) =

= P(Ktp ,0)) + PRV WSlg)) = P(K(p yRDOK(D b)) =

= B(R) + B = PR (pav L)) =DM + BWY) - B(rAv) .

]
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S0, the condition (’1.4) holds. Moreover, if {p. n} is such nop-
decreasing sequence of fuzzy subsets in E (K ( G,Sl,l ) 5GL)
that  {pag )T e BUK(E,2,) &) , then {E(e @ )T
MR(y,Q,) . Thus

(B = \P(K(pn,ﬁb,l))\"\ PIE(p ,0)) =B(r) oW
Theorem 4.,5: Let P: K(G "Q"l)—) [0,17] Ybe an usual probability
measure on [K(G,S,) fulfilling (#411) » Then the mapping Bt
¢—> (0,1] , defined by the identity

T () = P(Llp,S0y)) (415)
for all WM & § , is a fuzzy P-measure on &  which satisfies
\4e1) and
Vi e® B =Fw - [7] (4.16)
Theorem 4.6¢ The mapping Pt EY( & ,Q y L= (0,11 , defined by
(4010) and (4.15) for each M elE*(G',.S'L,.Q_n,]') , 1s the unique ex=
tension of fuzzy P-measure p on & to [E¥E »SL,SL,)  which
is a fuzzy P-measure on EB*(6 ,SL,SL,l) .
Proof: By analogoms way, as the proof of the Theorem 4+.%, we show
that T 1is a fuzzy P-measure on E¥(S ,SL,Q.,) which is a
extension of p . The uniqueness follows from the Theorem 4,%,0
Theorem 4.7: The mapping P \E(E((G,S?.1 ) ,—SL)"'“ 0,1} , defi-
ned by (410} and (4.15) for each M€ BB (K(S ,5,) oSL) , is a
fuzzy probability measure on BLEK(E ,5,) o SGL)
Proof: By analogous way, as the Theorem 4ot B
Remark: Comparise the mappings P and P o Since D \E % ]ﬂ):

Pt 3] oM =20 =0< =Py -ne([ 2], 00 -

3\[[ % :H&“ , D and 7D are different fuzzy probability me-
1 ¥}

f

it

asure op E(K (S ,SE,]) ,80) . Moreover, the monotonicity of P
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implies that T (m)< P(pu) for all me E(EK(G,R,),2) .
Therefore, the mappings P and P are called respectively lo-
ver extension of P and higher extension of P .

Since & =E%6,Q,8) =E(K(6,8),52) for the crisp case,pre-
sented above results are commomplace for this case. In fuzzy case,
the lover and higher extension are necessary for investigation of

distributions of fuzzy random variables.
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