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ABSTRACT

In this paper applied the concepts of triangular norm,
which was introduced in [3} sy we have defined the gener-
alized fuzzy "AND" and "OR" operators. The algebraic
structures in the generalized fuzzy operations are disc-
ussed.
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1. THE GENERALIZED FUZZY OPERATIONS

Let I be closed unit interval (0,1). In the following,
a, b, ¢, d etc are arbitrary numbers belonging to I.
Definition 1.1 (3} Let the function of two variables
T: IXT-——I satisfy the following conditions:
1) T(a,0)=0, T(a,!)=a
2) monotonicity T(a,b)< 1(c,d), if asc, b4d
3) symmetricity T(a,b)=T(b,a)
4) associativity T(T(a,b),C)=T(a,T(b,c))
then T is called the triangular norm or t-norm for short.
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Definition 1.2 If T(a,b) i8 a t-norm then 7' ydefined by

T'(a,b)=1—T(1~a,1~b).is called tY-norm for shOrt.
Obviously, T' satisfies following conditions:
5) T'(a,0)=a, T'(a,1)=
. 6) T (a,p)<1'(c,d), if asc, b<d
7) T (a,b)=7'(b,a)
8) T'(7'(a,b),c)=1"(a,T'(b,c)).

Definition 1.3 We call t-norm T (t'-norm T') the genera-

lized fuzzy “AND" ("OR") operator.
It 18 easily seen that all fuzzy operators, which was

introduced in (2), are respectively T and T' operators.
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II. THE STRUCTURE OF <¥,N,u,—, X, ¢>

The set of all fuzzy subsets on universe X is denoted by
% JLlet A,B,C,DE€F and A(X)=ax, B'.(X)nbx, c(x)mox, D(X)zdx.
x€X, p=1, gb 1, r>1%, r#2. Where p,q, r are real numbers,

Definition 2.1 (1) 1). The p-th power of the fuzzy set A

ia deneted by E and 1ts membership functien is definied by
A(K)—a . The fuzzy sed'g-is said to be the complement of
order p of A, ifT(X)== [1~apjp y XEX,
2). The intersection of A and B of order p is denoted by
A;% B and its membership function is defined by’(A,q B)( )=
=(1-min {1,2-aP -b}z}]p X € X. .
- 3). The union of A and B of order p is donoted by AUB
and its membership function is defined by (A L/B)(x)
min {1, (H bp) } X€X .

It quickly followsfrom above definitions and theorems in
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(1) the theorems:

Theorem 2.1 The union of A and B of order p is & t'~norm .

Theorem 2.2 The intersection of A and B of order p is

t-norm.
P PP
Theorem 2.3 The following propertives hold for{ N, U, X$:

+
1). involution law K=A

P Y P P
2) commutative laws A M\ B=B M A, AV B=pU A
] P P p_ P
3} associative laws AN (B NC)=(A NB) NC,

p P p P
AU (BUC)=(AUB)UC
P p

ety

P pPp P p D
4).De Morgan's laws A N BcIX" UE, AU B=%r\ B
P P P P
5). identity laws . AN =d, AN X=A, A UX=X, AU
=A
P P
6). complementary laws AN %ch, AU {%:X .
1t i3 easily verified that the ldempotent law, absorption
law, distributive law , and modular law 13 no longer true for

P P 1% g P P
(F N, J, X, $ >, fTherefere <%m,u,‘-, X,$> i1s a

new 8lgebraic structure.

4 g 2
1II. THE STRUCTURE OF CF N, U, B )

Definition 3.1 (1) The intersection of A and B of order

q
q is denoted by AN B and its membership function is definied

1
9 20~ - ~
by (AN B)  ymax{0,(a;" et )27t xex, .
(2) The union of A and B of order gq is denoted by A UB

and 1ts membership fuction is definied by (A 8) B)(x)z
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(1= max { 0,1~ aiq—1-— biq"1}] 2q-1 ’ x € X.

(3) The complement A of A of order g is definied by memb-
q L
ership function A(x)=(1- 8§q~1 y2a-?

q
(4) The gq=-th power A of A 1s defined by the membership

y XEX.

q
function A(x)= aiq"1 y x€X,
q q
Thaorem 3,1 (1) When g=1, AN B=A /AB, AU B=AA B,

%“‘I 0 i“A .

q o, whenax<1andbx<1
(2) Wnen g=00 4, (AN B)(x)= bx, when a_=1

a when b_=1
X, X

0, when ax<1 and bx<1

1, when a_=1 or b_=I
X X
(3) The intersection of A and B of order q 18 a t-norm,
(4) Tha uniom of A and B of onder q is a t%-norm,

T 9 9
Theorem 342 The foé.]ming propeties hold for (¥,n, u, X, ¢)

q
1) 4involution law A=A

q q q q
2) commutative laws A N\ B=B N A, A \UB=B UA

q q aq q
%) associative laws AN (B NC)=(A NB) NNC,

q a q
A Y (B UC)R(AUB)UC,
q q

—q %q q q %q a
4)De Morgan's laws A N\ B=A UT, A UB=AMNDB
a q
5)identity laws AN P = , A NX=A
q q
AU O =A A U X=X ,
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6) complementary laws A f\%': ¢, AU A=K,

9
Similar to II, we can prove that in (%, ,F’\,», X, P>

ldempotent law, absorptionlaw,distributive law and modular

!

law 18 no longer true, too.

IV, THE STRUCTURE OF <%, T, T',~, X, )

The following theorem can be directly verified ,

Theorem 4.1 The following properties hold ford%T,T.~,X,b):

1) involution law i=A
2) commutative laws T(A,B)=T(B,4), T'(A,B)=T'(B,A)
3) associative laws T(A,T(B,C))=T(T(A,B),C)
T'(A,T'(B,C))=T'(T'(4,8),C)
4)De Morgan's laws T'(A,B)=T(X%,B), T(A,B)=1 (X,B)
5) identity laws T(A, P )=, T(A,X)=A
T' (A, P )=A, T'(A,X)=X.

Definition 4,1 The algebraic s5iructura is called the

quasi-De Morgan soft algebra,lf 1t satisfied 1—5 in

theorem 4.1,

Obvieusly, <%, . A, ~LX, 9, (F, 0O, ®, =, X. b5,
FLe 8,7 2,0, F 7, F.mX, 00 (F, 4, 5,-, % é>
and (Z, £,9,7, X,$> (2)

are quasi-De Morgan30ft aléebra.
Theorem 4.2 1) The complementary laws hold for (% O, ®,
— X Pand {F P8, TLX, ),

2) The complementary law i3 no longer true for <5ﬁ, LA,
~’qu)>) <g)£r£)—-'x,q)>’ <%\F)‘F)~,'qu)> and <$)7‘;/F/-‘JX1CP>P*I
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3) In<F, - A, TLE,8) L KFL, 0,8, 7, X, ¢,
<%;£,§,—;X7¢>’ F, 1, ?,~,X) $ >,

F, 7,5, 70 R, 80ppy , <F, 78,7, X, 9)
idempotent law, absorption law, distributive law and
modular law is no longer true.

For comparison of algebraic structures is on the next
page.
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