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Extended_abstract

Recently, the idea of measure of information stemming from Shannon
theory has been enlarged in the framework of Shafer's evidence theory. Mea-
sures of imprecision, dissonance and others (see Klir [9], Dubois-Prade [7]
for complementary surveys) have been attached to a body of evidence, viewed
as an allocation of probability m to subsets of a given set @ called a fra-

me of discernment. Namely m is such that m(A) > 0, V A c Q and

E: m(A) = 1 <P
D#ACH

The pair (F,m) where F = {A|m(A) > 0} is the set of focal elements, is cal-
led a body of evidence describing the possible location of a variable x ran-

ging on Q. m is called the basic (probability) assignment.

This way of describing uncertain information seems to be rather general
since including standard probabilistic descriptions (F contains singletons)
and those based on possibility theory [13, 31 (focal elements are nested).

* Prepared for presentation at the Inter. Conf. on Information Processing and

Management of Uncertainty in Knowledge-Based Systems, Paris, June 30 -
July 4, 1986.
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This paper investigates the possible role of measures of specificity in
automated reasoning processes involving granular knowledge pervaded with un=

certainty.

A particular case of a body of evidence is when only one focal element
A is known for sure (m(A) = 1). It corresponds to the information granule
“"x is A", i.e. the value of x lies in A. A granule of information "x is A"
is said to be precise if and only if A = {w} for some w € Q. Otherwise the
granule is said to be imprecise. Precision is of course defined with respect
to a frame . The most imprecise granule is '"x is Q" which is a vacuous sta-
tement. Clearly, imprecision of A is reflected by its cardinality |A| (sup-
posedly finite), and more generally by f(|A|) where f is an increasing mapping from
N to[0,+0)_ f(|A]) will be called a measure of imprecision of |A|. A granu-

only if fC(|A]) < f(|B|). If we use a decreasing function f : IN - [0, +=),

f(|A]) is called a measure of specificity of A.

These measures are readily extended to a body of evidence (F,m) defi-

ning

fCF,m) = Z mCA) L FCIAD )
AR

(2) encompasses several noticeable information measures

. f = identity : |F,m] = E: m(A).|A| can be viewed as the (extended) cardi-
ACQ
nality of (F,m). If m is a usual probability measure [F,m| =1 ; if (F,m

defines a possibility measure |F,m| is the cardinality of the underlying
fuzzy set [4].
f(x) = Logzx. We get the extension of Higashi-Klir measure of possibilistic
information [8, 23 U(F,m). It is zero on probability measures and maximal
for the vacuous granule "x is Q'".

. f(x) = 1/x. We get Yager's measure of specificity [111 S(F,m). It is minimal

for "x is Q", and it takes the value 1 for probability measures.



Properties of these measures of uncertainty are studied in [6, 71, such as
monotonicity, additivity, etc ... according to the tradition of information

theory.

Consider a partially characterized body of evidence under the form of
a set of granules {"x is Ai”’ i = 1,n}, each granule being valued by a grade
of credibility ai. The pair (Ai’ai) is interpreted as an uncertain item of
information whose meaning is "My belief that x is A1~ is ui”. The following

conventions are adopted to assign a precise meaning to the number ai € [0,1]

- a, = 1 means that ''x 1is Ai" is certain.
- a, = 0 means total ignorance about "x is Ai”'
- ai is the grade of credibility Cr(Ai) deriving from some body of evidence

(F,m) as defined by Shafer [12]

Cr(Ai) = E: m(B) (3
0#B<A.
that is Cr is a belief function. Especially, if Ki is the complement of Ai’
Cr(Ai)+Cr(Ai) < 1. The quantity 1—Cr(Ai) = PL(Ai) is called the plausibility
of Aﬁ ; it is 0 when the fact "x is Ai” is completely false.

A set of uncertain statements {(Ai’ai)li = 1,n} thus translates into the
following proposition : there is a body of evidence (F,m) such that Cr(Ai) =
o, i = 1,n, where Cr is defined by (3). Let Bn be the set of bodies of evi-
dence {(F,m)lCr(Ai) =a., = 1,n}. Generally this set contains more than one
element, and we need some criterion to discriminate among them. A natural ap-
proach is to select the less specific bodies of evidence in Bn’ in the sense

of index f(F,m). This is the principle of minimum specificity.

Hence the calculation of a 'best" body of evidence representing the
contents {(Aj,ui)li = 1,n} of an uncertain knowledge base comes down to a
constrained optimization problem with objective function f(F,m). Let XA: m(A),
A € Q denote the decision variables ; we get the following linear programming

problem
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maximize f(F,m) = E: xA.f(lAI)
AR

under the constraints

™~
=
=
I
_IQ

, i=1,n P)

[~
x
p=J
I
N

where f is a measure of imprecision. This problem can be readily solved
via a simplex algorithm. The result may depend upon the choice of f. Some
Light isshed on this question in the next section. It may happen that (P)
has no solution. For instance if 3 Aj # Ai’ Aj = Ki and ai+aj > 1. Such

an occurrence indicates that the knowledge base 1is inconsistent.

3 - Combination_of two_items of information
In order to get a better feeling of what the result of (P) may look Llike,
several simple examples are now studied. First note that if the knowledge base
is empty, (P) reduces to max {f(F,m) | E: Xp = 1}, whose solution is simply
0#ACQ
Xo = 1, i.e. (F,m) expresses total ignorance, which is satisfactory. When on-
Ly one granule (A,a) is available, it is easy to check that the optimal solu-

tion of (P) does not depend on f and is defined by
X, = Q ; Xq = 1-o 4)

j.e. it is a simple support belief function focusing on A. [12].
Now consider the case of two granules of information (A,a) and (B,B), such

that ANB # @. It can be proved that only 4 variables x = m(ANB)

As *Bs *aB
and X need be considered and (P) reduces to
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maximize wa + x,a *t bi + x,..C

A AB

X + x, = O 5
under the constraints X + x., = R (6)

+ X + x, + x5, =1 e
where w = f(|Q]), a = f(|A]), b = £(|B]), ¢ = f(|JAnB]).

Viewing x X, and xq as slack variables, this problem has clearly only

A’ "B

one degree of freedom, expressed by x and any value of x such that, and

AB” AB /

only such that

max (0,a+B-1) < x,. < min(a,B) (8

AB
yields a feasible solution. Eliminating slack variables in the objective

function, (P) can be reformulated as

maximize w(1=-0=B) + ao + bB + xAB(w-a-b+c)
*AB

under constraints (8).

The solution of (P) clearly depends upon the sign of (w-a-b+c) 4 k and

is only one of the two following ones

- upper_solution Xpg = min(a,B) ; xq = 1-max(a,R)
Xp = max(0,a-B) ; Xg = max (0,B-a)
. Lower_solution Xpg = max (0,a+B-1) ; Xq = max (0,1-0-B)
Xp = min(a,1-8) ; Xg = min(B,1-a).
For_instance
. choosing f(F,m) = cardinality = |F,m|
k = |2 - |A] - |B] + |AnC| > 0, hence we obtain the upper solution

if §§ # AuB.
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. choosing f(F,m) = UF,m), f(x) = Logz(x), then

|2

. |AnB|

Bl

Hence if £ is small enough (e.g. & = AuB) 2k < 1 and the lower solution is
obtained. But if  is large enough, 2k > 1 and the upper solution is reco-

vered.

Remarks

. If ApB = @, we must cancel variable x in (5=7) and the unique feasible

AB

body of evidence is defined by Xp = 0, Xg = B, Xq = 1-o0-B > 0. If o+B >4
the two granules are inconsistent. A way to evaluate a degree of inconsis-

tency is to keep X as a slack variable in (5-7), where Xag = m(@)lthe

AB
weight committed to the empty set ; then the degree of inconsistency can
be defined as min{xABI(S—?)}. This degree is clearly o+B-1 due to (8), an

intuitively satisfactory result.

. Another way of processing the pair of granules (A,a) and (B,B) is to inter-
pret each of them separately as independent granules
m(A) = a ; m() = 1-a
m'(B) = B ; m'(Q) = 1-B
and then combine them via Dempster rule [12], i.e. if AnB # 0
m''(c") = E}m(C).m(C')lch' = ¢"}. This process leads to
m'"' (AnB) = a.B m'' (§2) (1-a)«(1-8)
m' (A = a(1-B) m' (B) (1-a)B.

i.e. a feasible solution of (P) lying in between the upper and lower solu-

tion ! Hence our approach is a more general way of combining information

than Dempster rule. Especially, no independence axiom is needed.

Consider two uncertain granules of information expressed as formulas 1in
propositional logic, say p and p*>q, such that Cr(p) = o, Cr(p>q) = B. Note
that pn(p>qg) = png is not a contradiction. Using the results of section 2,

where A represents p and B represents p+q, we can characterize the set of un-
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certainty measures over the set of propositions generated by p and g as a set
of Llinear constraints, and choose the proper uncertainty measure using the
principle of minimum specificity, under the form of a basic assignment m.

The credibility of proposition g can be obtained using (3), applied on the

upper or the lower solution. We thus obtain the two patterns of inference

dpper_solution Crip) = a Lower_solution Cr(p) = a
Cr(p>q) = B Cr(p>a) = B
(1) (1D
Cr(g) = mino,B). Cr(g) = max(0,0+B-1)

(I) is always valid if Cr is a necessity measure (see [10]) while (II) is
always valid (as a lower bound) if Cr 1is a probability measure. The actuatl
solution lies in between, i.e. max(0,a+B-1) < Cr(g) < min(a,B), a result

which is already known [5] under the form

min(Cr(A), Cr(B)) > Cr(AnB) > max(0,Cr(A)+Cr(B)-1)

Contrastedly, using Dempster rule of combination we get the following pattern

of inference [1]

Cr(p) = a
Cr(p>g) =B

(ITD)
Cr(q) = a.B

which lies in between (hence is consistent) with (I) and (III). When

o =B =1, (I-II-III) collapse into the usual modus ponens. It is noticeable
that (1), (II) and (III) use the three basic semi-groups of [0,1] with iden-
tity 1, i.e. the triangular norms minimum, product and max(0,xty-1). These
operations are thus confirmed as proper ones for the propagation of uncertain-

ty, regardless of the uncertainty measure which is used.

Remark : In all patterns (I) (II) (III), we always get PlL(g) = 1.
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This approach can be extended to deal with any knowledge base contai-
ning a set of statements represented, for instance, by means of formulas
in propositional logic {pili = 1,n} taken as axioms, each P being weighted
by a grade of credibility Qi' The approximate reasoning procedure can be
outlined as follows
1. Write the constraints of (P) for each axiom P, i.e. Cr(pi) = Q.
. Solve (P) using the minimum specificity principle
3. If a feasible solution exists compute Cr(qj), PL(qj) where the qj's

are the propositions the truth of which must be established.
Step 2 is solved by means of standard linear programming. In other words
the inference engine is based on a simplex algorithm. Adding or retrieving
granules of knowledge comes down to adding or deleting a constraint. Especial-

ly some analysis of why the knowledge base is inconsistent can be performed

by checking for violated constraints.

This approach constrasts with another one based on Dempster rule of

combination [1].
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