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ABSTRACT

In this paper the author,on the basis of the work in (4],
(§57ane [ 6], proposes two classes of separation axioms in

rclogicel molecular lattice,which are generalizations of
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parati axioms in general topological spaces.In particular,
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the suthor has proved that under one class of these separation

¥ioms the convergence net in Hausdorff Space has unigue limit.
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In this paper two ~lszcaes of sepsraticrn avioms are introduced
in toyclogic.l molecular lattice, which is first proposed by
Wang Gueciun in pszper [ 2], one class which is defined by use of
the cren-neighborhood i:¢ one-sided separation axioms, the other
whnich is defined by use of the open- and far-neighborhood is
two-sided separation axioms, these two classes of separation
axicms btoth are the generalizations of separation axioms in
general topological spaces. The thoughts of two-sided

originated from Wang Peizhuang's paper [3], this paper also

discussed the convergences of two kinds of molecular net, one

(WS

s reiative to the structure of open-neighborhood, the other

is reiative to the structure of open- and far-neighborhood.

2. Lne class of one-sided sevaration axioms

lattice L which are used in this paper always is the

“orological lolecular Lattice (TML) proposed by Wang Guojun in
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i © the symbols and results please read the paper [2].
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Tinition 1.1 Let (L,7) be a THML, for any A€L, U € L is called

a neightorhood of A, if there exists V€] suth that A<V < U.

s
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he femily consisting of all the neighborhoods of 4 is denoted

o

vy §04),i7 U is neighborhood of A and Ue€J , then U is called

s

1 cpren-neighborhood of A, the family consisting of all the

oY)

open-neishborhocds oF £ is denoted by §,(4).
Yor converliernce, wo define ore symbol.

. o . - - - v .,
Definiticn 1.2 let (;,J; be a THL =2nd for any A € 1, +*he

inters< - .. n of =77 orer gets contoirire A is denoted e
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Treorem 1.1 let L(T) be a T¥L, A,B & 1, then

() A £0(4);

(2) 1If 4 < B, then O0(4) < O(B);
(3) O(avB) 2 0(4) V 0(R);

(4) C(AAB) < C(A)AC(E);

(5) If A is open set or closed set, then O(0(4))=0(A).,
The proof is straightforward.
Definition 1.2 A TML L(n) is called a T.,-space iff, for any

mclecule a , ber and a< b, there exists U € ﬂﬂa& suth thst

Theorem 1.2 A THL L(n) is a T,-space iff, for any aem, a is
z component of Of{a).

Proof: Necessity.let a€7M, from Definition 1.1, we know
thzt a < O(a), if & is not & component of 0(a), we can suppose
thzt beTL which is a component of C(a), and a<b<£(0(a). Because
L{n) is T, -space, for a< b, there exists V & ‘ﬂ(a) suth that
XV, that is, bX A {V; V € fo(a)} = 0(a), this contradicts
tre fart that b is a component of O(a).

Sufficiency. For any a,béen and a<b, because a is a
cormponent of O(a), we have bXxC(a), so that there exists
Vv € ,f,,v’,a) suth trat b%V, from the arbitrariness of a,b ,we
know tret L(w) is a T -sp=ace.

Definition 1.4 A TML L(m) is czlled a T,-space iff, for any
2, veT zrnd 2aXx b, either there evists U € fo(a) suth that bX U,
ts V€ Yo{b) suth thet 2 xV.

It ir clear thet T, = T,.

Trocrem 1.7 A THL L(M) is T,~-spzce 1D, for oany a,t €7 and

mxl, ¢i*her 2% 0(b) or bx{(al.
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Proof: Let L(T) be a T, +space, a, be T, akb, from the
Definition 1.4 , we may assume that there exists U & )oo(a)
suth that b X U, hence b& A { B; B € fo(a)} = 0(a).

On the other hand, if a %X b, we may assume that a £ 0(b),
then we have V €& ﬁ,(b) suth that ax V, i.e., L(x) is a T,-space.
Definition 1.5 A TML L{w) is called a T,-space iff, for any
a }% b, there exists U € f.,(a) suth that b X U.

It is clear that T, = T,.

Theorem 1.4 A TML L(w) is T,-space iff , for any a€m , ve
have C(a) = a.

Proof: Necessity. Let L(w) be a T,-space, from Theorem
1.2 we know that if a€n, then a is a component of O(a). If
C(a) has another component b suth that aAb = o, from the hypo-
thesisy we know that there exists V€ fo(a) suth that b X V,
that is, b £ 0(a), this contradicts the fact that b is a
component of O(a), so O(a) has one component, that is, CO(a) =
a for any a € TUL.

Sufficiency. If for any a e, we always have a = 0(a),
then if a,b€é ™, a<b, it follows that b >0(a), that means
there exists U € ﬂ,(a) suth that U X b; if anb = o, then ax 0(b)
and b% C(a). so0 there exist V € fo(b), U € fo(a) suth that
axXV, bXx U, that is, L(®) is T, -space.

Definition 1.6 Let L(n) be a TML, A€ L, if A only has finite
components, then A is called a finite set ; if A only has
countabtle components, then A is called a countable set; if A
has infinite components, then is infinite set.

Theorem 1.5 Let (L,7J) be a T, -space, if % has finite base,

then T_is finite.
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Proof: Let J = {VI y eee, V,L} be a finite base for T, -space
L(n), for any molecule aer, there exist V; & 7, suth that a < V; .
Let \{q » ++ey Vi be all elements of ?J, which contain a, let
v =/\{V()'; j=1,..+, k}, then V& °J and a «V. Obviously, for any
open set U, if a=<U, then V=U, by using Theorem 1.4 , we have
V=a, so a must be the union of some elements of base ,, that
means, for any a€n , we have a¢€¢ 7, , if a, b €T and axb, we
also have a, b€ "J:, sy aXx b, because ‘jo is finite, so M is finite,
and our theorem is proved.
Definition 1.7 A TML L(R) is called a T,-space iff, for any
a, beT and aAb = o, there exist U € f,(a), vV € ﬁ,(b) such
that UAV = o.

It is clear that T,+ T4=T, .
Theorem 1.6 If a TML L(®) is a T,-space then for any ae R, we
have O(a) €N .

Proof: Let L(®M) be a T,-space, suppose that ae®, if O(a)
is not a molecule, then there exist more than two components
at least in it, we may assume b, ¢ both are O(a)' components,
and b 2a. From bAc = o we obtain aAc = o, so we have U € f.,(a)
and V€ fo,(c) suth that UAV = o, that is, ¢ X0(a). This
contradicts the fact that ¢ is a component of 0(a), so O(a)en,
this completes the proof of the theorem.

Now we give the definitions of Ty;< and Ty,-space as follow.
Definition 1.8 A TML L(T) is called a T3-space iff, for any
a €N, A€EL, A is closed set and a A A = 0, there exist U € Fo(a),

V€ £,(A) such that UAV = o.
Definition 1.9 A TML IL(r) is called a T, -space iff, for any

A,B&L, AAB = 0o and A,B both are closed sets, there exist
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U € f,(a), V € £(B) suth that UAV = o.
Theorem 1.7 Let L(x) be a TKL, if every molecule is closed set,
then Ty -(and T¢-)space also is T,-sbace.

The proof, being straightforward, is omitted.

Similar with the general topology, we have some conclusions
as follow (the concepts of sublattice and topological sublattice
in TML can be found in paper [2] written by Wang Guojun).
Theorem 1.8 If a TML (L(wx),”J) is Ty (i=-1,0,1,2,3)-space, then

its sublattice (L|E, EATJ) is also T, (i= -1,0,1,2,3)-space.

2. The Convergence of Molecular Net

In this part we shall discuss the cpnvergency of molecular
net about open-neighborhood.
Definition 2.1 Let (D,2) be a directed set and L(x) a molecular
lattice, the function S: D —»%is called a molecular net in L,
and is denoted by S={S(n), ne D}; S is said to be in A iff, for
each ne D, S(n)< A; Let L(x) be a TML, a net S in I is said to
cenverge to a, or a is said a limit of S iff S eventuslly belongs
to each U € fy(a), and is denoted by S—a. The set of all limits
of the net S is denoted by LimS. a is said to be a cluster of
a2 net S iff, for each Ue f(a), S frequently belongs to U.

The convergence defined as above is relative to open-
neighborhood, the convergence which was discussed in paper [2J
is relative to far-neighborhood, obviously,both convergences
are distinct.
Theorem 2.1 Let L(X) be a TML, for any a€7, if a is a limit
of net 5, then for any b€W, b»a, b is also the limit of S;

similarly, if a is a cluster of net S, ben, b2za, then b is
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also the cluster of S.

Proof: We shall now prove the first part of the Theorem,
the proof of the last part is similar. Suppose that S—a, aern,
be€rn, bra, for any U€ f(b), there exists V € “J suth that
b<V=U, because a<b<V, we have V € fo(a), so Ve f(a),
because S—a, it follows that S eventually belongs té U, from
the arbitrariness of U, we obtain that S—b, hence if a is the
limit of S, .a= {b; bem, bza} are also the limits of S.
Theorem 2.2 Let S be a Molecular net in L(n) and RCL suéh
that S is frequently in each element of R , and the inter-
section of two arbitrary elements of R still contains an
element of R, then S has a subnet T which eventually belongs
to any element of R.

The proof, being similarly with the general topology, is
omitted.

Theorem 2.3 Let L(M) be a TML,a€ X ,a2 is the cluster of S iff,
S has a subnet T converging to a.

Proof: Sufficiency is obvious, necessity can also be
proved if we take the notice of the neighborhood family f(a)
satisfied the conditions of Theorem 2.2.

Definition 2.2 Let L(m) be a TML, for any a€mn, f(a) has
finite btase, (I1,7) is called to satisfy the first aviom of
countability.

Theorem 2.4 (1,7) satisfies the first axiom of countability,
aem is the cluster of molecular sequence S iff S has subse-
quences converging to a.

Proof: Sufficiency is obvious, we shall now prove the
necessity. Let a be a cluster of S={S,| n=1,2,...J and
{B« | k=1,2,...] a countable open-neighborhood base of a and

B« 2 Exyy » for each B, we take Sa, € Bk and ng > n,, (let n,= o)
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(a is the cluster of S, so S belongs to B freguently for
k=1,2,+..), s0 T= {Snn\ k=1,2,...} does be the subsequence
of S which converges to a.

Similar with the convergences related to far- and Q-
neishborhood, we have some corespondent conclusions as follow.
Theorem 2.5 A TML L(w) is T,-space iff, for each molecular
net S in L, the union of limits of S has only one componente.

Proof: From the Theorem 2.1, we know that if a is the
1imit of net S, bz=a, then b is also the 1limit of S, so0 the
union of limits of S is only the maximal molecule (Please read
the pzper (2] ). Wé shall now prove the necessity at first.
Let S be a molecular net, LIimS, the union of limits of S, has
more than one components, we may assume that a, b both are the
distinct components of LimS, then aAbd = o. For L(r) is T -
space, there exist U €& ﬁ(a), V € {(v) suth that UAV = o,
it 1s impossible for net S to belong to two disjoint sets U and
V simultaneously. Contradiction. The necessity is proved.

Sufficiency. If L(m) is not a T,~space, then there
evxist a, beéM suth that aab = o, and for any U € fﬂ(a),
V e f(b), we always have UAV 20, because fo(a) and f (o)
totrh are the directed sets( directed by < ), in fo(a)Xﬁ,(b),
we make a convention: (U,V) (U ,V )esU=<U,and V<V, , then
(fofa)x fi(b), z) formed a directed set, we define a net:
S= {S(U,V), (u,v) & ﬁla)xiﬁ(b)}, in which S(U,V) is a molecule
selected arbitrarily in UAV, then S converges to a, b simul-
taneously. Let m,, m, is maximal molecules which contain a,
t respectively, that is, a&<m,, b=m_, then m,A m, = 0 and m,,

my are two distinct components of the LimS.
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2. Two~sided Sepsration Axioms

For classical concept of neighborhood has much limitations
in fuzzy topological space, hence Pu Paoming, Liu Yingming
introduced the important concept of Q-neighborhood in paper (1],
and set up the theory of Moore-Smith convergence, which has
gre=zt effect on the studies in fuzzy topological space. Later
Wang Guojun introduced the concept of far-neighborhood in paper
[2}, the following papers occurred on separation axioms are most
using the Q- and far-neighborhoods to discuss the separationity,
But Wans Guojun pointed out in paper (7} that the chain of open
set — neighborhood — interior point — open set is still
effective in fuzzy topological space, so the concept of the
open-neighborhood still occupied the important position in
fuzzy topological spaces. In this paper, after discussed the
separationity related to open-neighborhood, now we will discuss
the separationity related to open- and far-neighborhood.

To begin with, let us recell the concept of far-neighborhood
occurred in the paper [2) .
Definition 3. Let L(®) be a TML, aewn, PE ‘jc , if ax P, then P
is called a far-neighborhood for a, the family consisting of all
the far-neighborhoods for a is denoted by M(a)( J°= {a|a‘e TJ)).
We shall now discuss the separationity related to open-
and far-neighborhood.
Definition 3.2 A TML L{m} is called a T)-space iff, for any a,
b€MN, a<b, there exist U € f{,(a), P € M(b) suth that bx U,
a<s P,
Wang Guojun discussed the separation axioms related to

far-neighborhood in paper [4), it is easy to prove that here's
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T4{-space can infer there's T,-space, and when L(M) is a topologi-
cal orthodox mclecular lattice, both is equivalent, so the results
on T,-space in paper [4) can be used in this Q&—space under
Certain conditions.
Theorem 3.1 A THML L(n) is T4—space iff, a is the component of
2 and O(a) (@ is the closure of a ).

Proof: From definition, Theorem 3.2 in paper (4], and
Theorem 1.2 in this paper, the theorem can be proved easily.
Theorem 3.2 Let L(n) is a topological orthodox molecular
lattice, L(®) is Tf—space iff, for each molecule a €M, a is the

component of some open element.
Theorem 3.3 Let L(n) is a topological dence molecular lattice,
L(r) is T/-space iff every molecule belongs to the union of
far-neighborhood for a, that is, for any aeT , aéVfP|P€ a)t.
Definition 3.3 Let L(K) be a TML, a, ben, aAb = o, if there
exist P € \(a), U € f,(a) suth that b <P, bX U, or there exist
P €N(v), U e f,(b) suth that a<P, axU, and L(n) is T/-space,
then L{R) is called a T,-space.
Theorem 2.4 A TML L(®) is a T,-space iff, for any a, b&e®,
if a<t, then b¥£0(a) and v%X2a, if a Ab = o, then a%b and
bxCla) or bxa and a%x0(b).
The proof, being straichtforward, is omitted.

Definition 3.4 A TML L{T) is called a T(—space iff, for any
2, be T, bga, there exist U € fo(a), P € M(b) suth that
bXU, a<P..
Theorem 3.5 A TML L(W) is a T,-space iff, for any aex , a is
closed element and 0(a) = 3.

From the Theorem 2.8 in paper (4] and the Theorem 1.4,

this theorem can be easily proved.
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Theorem 3.6 A THL L(7) is T{-space iff, all finite sets are
closed sets and when ae®W, 0(a) = a.

Proof: Considering that every molecule is finite set and
the union of finite closed sets is still closed set, then using
the Theorem 3.5 ,the theorem can be proved easily.

Definition 3.5 A TML L(W™) is called a T]/-space iff, for any

a, b €Tm, axb, there exist P € M(a), U € f(b) suth that P2 U,
Definition 3.6 Let L(m) is a TML and S a molecular net in L(x),
aem, if for any U € ﬂ(a), P e K(a), S belongs to U eventually
and does not belong to P eventually, then we call S converging
to a relative to open- and far-neighborhocd, and is denoted by

S —» a.

Theorem 3.7 A TML L(®) is a T/-space iff, for every converging
net, whose limit is unique.

Proof: Hecessity. Let L(®) be a T{-space, if there exists
molecular net S suth that axb and a, b both are the limits of
net S. If a<b, because L(K) is T{-space, there exist P & " (b),
U & ﬂ(a) suth that PZU, for S -—»2z, so S belongs to U eventually,
that is, belongs to P eventually. On the other hand, S — b, so
for P € M(b), S does not belong to P eventually, we get a
Contradiction. If aAb = 0, we can prove it similarly.

Sufficiency. 1If L(W) is not a T,-space, that means there
exist a, b€ M, axXb, and for any P ¢ 7L(a), U € ﬁ,(b), Wwe have
I%¥U. Now we assume that b< a at first, then obviously, we have
102 cla), fola) cf(b), and (f,(b), <), (N(a), =) both are
directed sets, for M(a)x f,(b), we define that (P,U)=(Q,V) iff
P74 and U<V, then we formed a new directed set (M(a)x Fo(p),2)

and for each (P,U), we have PXU, so there exists a molecule



42

S(P,U), suth that S(P,U)<U and 5(P,U)¥XP. Let S= {S(P,U),

(P,U)é-’[(a)x ﬁ&b)k , then it is clear that S converges to a,
b. Proving as follow: for any U € ﬁ(a) and P € N(a), because

fo(aJ c f(v), so UE€ fo(b), for (P,U) € ﬂ(a)x\fz(b), when
(Q,V) z(P,U), then we always have S(Q,V)< V<U, S(Q,V)%Q,so
S(Q,V)X P, that is S — a,similerly, we can prove that S — D,
that means there exists 2 molecular net S, which has more than
one limit at least. If aAb = o, similar with the Theorem 2.5,
we can z2lso prove it.
Definition 7.7 A TML L(m) is called a Tj-space iff, for any
molecule a2, closed set A, aXA, if there exist P & Y((a),
U & fu(A) suth that P2U.

It is clear that T34 T)/= T..
Theorem 3.8 Let (L[®,JAE) is the topological sublattice of
(L(m),77), if (L(m),7) is Ty (i= -1,0,1,2,3)-space, then
(LI®, JAE) also is T;("i= -1,0,1,2,3)-space.

Trhe proof is omitted.

I am very greteful to Professor Wang Peizhuang for

his valuable suggestions.
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