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ABSTRACT

In this note we define the concept of fuzzy universal algebras and
outline thelr simple properties with respect to homomorphisms, fuzzy
equivalance relation and fuzzy congruence relations. It is shown that
given a fuzzy congruence relation on an algebra, a subclass of fuzzy
subsets of the carrier space of the algebra can be obtained and that this
subclass of fuzzy subsets with the induced fuzzy operations is an algebra
similar to and 1s isomorphic with the given algebra.

1. INTRODUCTION

In the past fifteen years, groups [91, vector spaces [6], rings [12]
etc. have been fuzzified and studied in some details. Also in [8],
E.G.Manes proposed a class of fuzzy theories where he mentioned the
fuzzification of universal algebra. Since groups, rings, vector spaces
etc. are particular classes of universal algebra, it seems appropriate
to take a closer look at the fuzzification of universal algebrasand to
study them in more depth. In this note we make such an attempt, show
the unification of [9], [6] and [12] and also pave the way for further
studies in fuzzification of other algebraic structures like lattices,
semigroups, modules etc. We shall not give the full technical details
here. They wi1ll be published elsewhere. We only outline the results
here. We refer the reader to the standard references on Universal Algebra
by P.M. Cohn 2] and G. Gratzer [5], and on lattice theory by G. Birkoff
[1] and G. Szasz [11].
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Let I be the unit interval. For any non-empty set X, let &(X) denote
the set of all fuzzy subsets of X. Let A be a finitary algebra denoted by
tS,F] where S is the underlying set called the carrier space of A and F
is the set of algebraic operations on S. Every operation fueF on S
induces _an- operation on FS) as follows:

Let f_: LSS S

(x1, Xos wee s X
§ &)™) AS)XRKSIX ... XHS) - ()

(UAIs UZ’ e 3 Un(a) - H
where for any xeS,

p(x) = Sup tu, (x4) My (X5) oo oA

X = fu(x1,X2,---,Xn(u))

See the fuzzification principle 6.1 [8] or Zadeh's extension principle
(141, Let

Fdenote {§ f eF}

Qur main results are the following.

1. If‘SG%S) denotes the subset of fuzzy points (see [10]) 1n F(S) then
& - 3P(s),F1 is an algebra similar to and isomorphic to the given
algebra A = [S,F].

2. If A=1[S,F] and B = [T,F] are similar algebras and ¢ 1S a mapping
from A to B and if the induced mapping from H(S) to H(T) (see [131) is
also denoted by ¢, then the following diagram

Sn(a) fa | S
¢n(a) "
Th(a) T

commutes for every faeF if and only if the diagram



commutes. That is, a mapping ¢ from A to B is an algebra homomorphism
if and only if the induced mapping from &(S) to X(T) is a fuzzy
homomorphism. That is the induced ¢ respects the algebraic operations
§ €F.

o

3. A fuzzy equivalance relation pon a non-empty set X is a fuzzy subset
u from XxX to I, that is reflexive (u(x,x) = 1 for all xeX), symmetric
(u(x,y) = uly,x) for all x,yeX), and transitive (pon < u where

wop(x,y) = sup  (u(x,z)Au(z,y))). See Kaufmann [7]. Goguen [4]. Let
zZeX

A = [S,F] be an algebra and gQ(S) denote the set of all fuzzy relations
on S. Each faeF induces a composition of relations on ﬁ(s) as follows:
For each n(a)-tuples wy,uy, .. ) un(a)e.ﬁ(S)

(£ Gupongs oot (o)) 06 Y) = sup (uy Oy ) aug(xoa¥p) Aees iy gy ¥n (o)
X fu(x1,x2,...,xn(a))

y = Ty Yooy

for all x,yeS. F= (fa:fueF). If 3(5) denotes the subset of jRS)
consisting of all the fuzzy equivalence relations on S, then the
operations fu oniﬁ(s) defined as above restricted to E(S) are well-
defined, thus{4(S), F]lis an algebra similar to A. A fuzzy equivalence
relation ueE(S) on an algebra A = [S,F] is said to be a fuzzy congruence
relation if for each f_e F, '

fu(u,u,---, u) < u.

That is, a fuzzy equivalence relation is a fuzzy congruence relation if
and only if it is a fuzzy subalgebra of [E(S), F).

A fuzzy equivalence relation on X is decomposed into a class of fuzzy
subsets on X in the following way. Let w:XxX-I be a fuzzy equivalence
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relation on X. Wy called the weak 1-relation on X, is a crisp
equivalence relation on X defined by Xw,y if and only if

w(x,y) = 1 (x ,yeX). Let &=[x] be the equivalence class containing
x for each xeX. A fuzzy subset iQ&is constructed on X as “K(Y) =n(Xx,y)
for all yeX, x fixed in X.

Then (i) llX is well defined;

(ii) Vo = x .
xeX £ X

(111)  wpawy zn(x,y) for all x,yeX,xeR yel.

(iv) Ay = 0 if and only if p(x,y) =0

5. Theorem: Let A = [S,F] be a given algebra, u a fuzzy congruence
relation on S. Let W, denote as before the weak 1-relation on S.  Then
A is epimorphic to the quotient algebra A/wq. Let T be the subclass of
$(S) consisting of fuzzy subsets {”E}xex génerated by the decomposition of

the fuzzy congruence (and hence fuzzy equivalence) relation u on S. Then

[T, Fl is an algebra similar to and is isomorphic with the algebra [A/@1,F].

Thus the above theorem decides which subclasses of H(S) form an algebra
with the induced fuzzy operations.

I wish to thank my supervisor, Professor W. Kotzé for his encouragement
and interest shown in this work.
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JHBoalRauT

aypergroup was Tirstly studied in (1), which is tne Tiret
step. This paper is a convinuation of (1), where soue ex-
amples Tor hypergroup are given, souwe properties oi nyper-
roup are discussed, and she problem ror the classiiica-
tion of hypergroup in considered.

'

S SASLY CrBChsks U aYroRGROU-

‘he meaning oI symbols and terms used in the paper, il they are
sxplained specially, may be iound in (1 ).
ippose that G 1. a group from oseginning to end.

o

q<: JG—W. Qiﬁ called a hyoergroup on G, if it is a group
.t vespect to the operation:
AB= {ab | aeA,veBY} Vv 4,3 €Q
4t 1ts identity element is denota2d by E.
‘irstly we sum up four basic thsorems based on the main con-

srpe din {1 ).

GASIC rHs0fBe 1 (cardinal number theorem) If Q is a hyper-
DA then

‘1) (vaed )(carda=cardl);

(i) (VA‘&emxAna#w implies card (ANB)=cardR) #

49LC ShmChisk 2 (structure theorem) Let (2 e a hypergroup on

{2 B is a subgroup ol G, then

G —“u{»x I AéQ}

~ubgrouy oi G s a normal subgroup of G , and
Q:e /E ”
salC PHBUKZH 3 {structure theorem) Let (3 be a hypergroup on
. i XL N Lo R
15 o€k, then G is a subgroup ot G, K is a normal subgroup of G*
¢ @ is a -encralized guotient gioup, i.e.,Q«G Im. ﬁ
SAGLC THAGCLMM 4 (construction theorem) Let EGZ -9, 1 —h, and
te - subgroup of G. If H satisiies
(¥xeil) (xB=5x)
v
Q ={xx | xee}
nypargrour on G and H"Jg . #

these four basic theorems will play a iuaportant role in the
fuelyr 01 cyperalgebra.
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iadorba el G be a positive real numbers multiplicative
yag. flaxe ﬁ:[ ,+00 ). Clearly & i3 a normal subsemigroup. Let i
set of all positive rational 1umbers, which is a subgroup
: . LUt
Q ={& |aeny
s roa the 'asic theorem 4 g:is a hypergroup on G, and % is the
iiontity 2lenent . In fact,

o) | aen}
e that ¢*¥=¢. +rom the basic theorem 3 Q is

*

’ Q:
2 let G be a real nuubers additive group. Take b=

Lr), clearly B+E=E, O&E, whicn shows that B 1s not a normal
st eais oup. In addition, 4 which is a set ol all integers is a
subgroup of U. rut

Q@ ={u+i | nesy
can wasic theorem 4, Q:M%a.ﬂjpergroup on G, and Z«/Q, in jact
/'3\3 . 4 dernusberzole chain is formed by the elements in(}:
e D(=2,+0) D=1 ,+O)DED(1,+@) D(2,+0)D .....

Tt o1 worth notice that the example shows there exisfs such a
nororgroup which is not a reneralized guotient group.

*
i seneralized cuctient reoup, 1l.e., Q:G ‘F Because G=G
Gli. In addition, it is easy to obtain He'q.

el v et (G,+,<) be a partially ordered additive
g = {ta,v] l a, 0€G

L2,01 = {cec l agcsby
."zlg we deline an algebralc oparation:

(=, ,bfﬁ[az,bg‘lz[‘a,‘qua2 ,'b}+b£]
it i easy to see that (Q,+J is a hypergroup on G and Ez{O}. In

Slitdion, the i pugs Ioand g
f: — G
fa,b)F*> 1
&: —> G
(a,bJ—=1b

qre Ll osurjeciive homomorphisms. Clearly we have
Kerf=J{0,b] | vec ¥
Kerg={(a,0] | a€C}Y

Q/kerft
Q/kerg

Kerf
Kerg

~
\r

G

R it
fi¢ ¢

T SUFE ruOrsrSIES O HYPERGROUY

CAROGREE 3 L2t q Cl%b—w. It {e} Gg, then Q is a hypergroup iir

X ; x
<:a}:unzL3 ;.

ihUr. <€ ¢ Clear
£ S Clearly Ez{e], and iroa the theorem 2 it may ve krown
x

*
T Q’:u /{e} =G el e,
o UrUSTOLON 300 Let Q be a h:pergroup on G. If E<G, then
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fye {f:} -
: Clear

::}:{ T} iy q;(}r . _
> ¢ ou={e} > Q=6 /{e}¥ 6"

(70€Q ) (A#5 > e4h)
LUr.  notice @=g/E . WLBELD.
fnutel 5.2 Let G be a firite group and QC ZG—Q). It G‘GQ,
& 4w hypergroup iff 0 ={c1}.

JHuuE. & 1 Clear

> tecause U€{{ , cardG=curdll by the basic theorem 1. 3Since
15 Tinite and 5< G, G=i. doQ=G/(}:{G}. G.E.D.
: T Q be 2 hypergroup on G, then (G,{e}ég)<=>

>

oL USITLOR 5.4

U . <&
> notice cardG=card{ey. Wel D
JamUlb 5.5, Let G be a rinite group. If q is hypergroup then

*
/cardE = cardi=1 =>

LU .
Q(;*

={;

& > ¢ rdG*:cardQ=cardG*/E=cardG
vege) . WeliaDa
(11 we had poinied ouat that G is finite implies that

REEOH In
Let G be a finite group, and cardG be a prime nun-

L.

SHEBORBM 5.4

ber. It q 1s 2 hypergroup on G, thenQ ={G} or 0:{{9}} OTQ;G'
*

* *
secause G < G, G =3 or G ={e}

[RRSRL SR
4 Let 4 =@.
) 1t =={eY}, then (3:(}/(6}3'(} .

n=G, then §=G/G={&

fol I u=G,
i Let gT=fel.
aree #={eY , s0 § ={e}/ ()= {{e}}.
cHUFUSLLLUR 3.3 M’Q be a set o1 all true subsewilgroups in G,
hypergroup ift ¢ G andq 2a*,
X
since {e}€@, ¢ <G and q=G*/{e} %,

ther g is a i
Pl . =
< (lear w el
AUFUSLTION 3.4 if Q be a set of all true subsemigroups con-
dentity element, then Q is a hypergroup 1iit car‘d0:1

suoaned the g
(B€Q > B =E).
Uk . =
v eiiele

U By q:=q*/r we have caﬂig:ﬂ, S0 Q ={{e}}. Clear-—
to={e} .
Let Q pe a set of all true subsemigroups in G.

g
e

Ph'-v

Ly
Clear

/

Ll USBIRICK B.9
HYDPeLE . . L *
roups contained the identity elewent, and G =G or G ={e}' .
Let HéQbe a subsemigroup contained the identity ele-
trivial subsemigroup. I:i this

UG .
It way be proved that H is &
H#{e] , so e§ii, this is a contradiction. In addition,
¢* is a subsemigroup contained the identity element,

is n hypergroup, then G do not nave any nontrivial subsemi-

talse, then
¥ .
G < Gy
ele D

Yl CLAISLELCA - LOK UN HYPERGROUY

-
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Let q be a hypsrgroup. If there exists <G such

15 called Hyper 3 type; IfQ=G"/E Lnenq is
type ; If J =G¥|8, then (@ i8 called Ayper 2 type; 1T
5, then it is called iiyper 4 type.

f uotient groups are  callad
“viowing relation graph:

Hyper O = Hyper V' Diyper 2 > dyper 5

myper O type, tnen we have the

U

he 1 4s dyper 2 type, tut not Hyper 1 type. The exaa-
;) Type, but not uyper £ type.
2 1o LLo exaaple will snow that Hyper 1 type hypergroup
y owe O type.

b 4: Let u:ziar{B,T,?, .. .,TT} . tave ={0,6 }, n={0,4
g }. iovte

Q {d+Jl)§u\ {I )} { tj}}
Q<~v /B. 3ince G ={

Ly ; \)’—14,~‘;D,'O}¢G s S0 QiS Hyper 1
but ot dyper O type.

SUING UFPER FurUshis: Wwhether there are [jyper

Y

4 type

ow we consider the problem o

classitiction ror hypergroups
54 nothey voewpoint.

.0 wut € =C , then any hypergroup on G is always a partia-
oraered group with respect to € . Particularly@is called a
criln hy; roroup when (2 ) is a chain group. The exauples which
JOYe discussed by us are aliout chain hypergroups. It looks as it
~oain sypercroup can contain a bilg kind of hypergroups. Thisg should
speciaily notice.
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