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1 - Introduction
In a recent paper [61, the authors survey different measures of information
which have been proposed in the setting of Shafer's evidence theory [101. More

particularly three measures are considered :

CHC(m) = - g: n(A) . LnCCr(A)] )
ACX
CHIG =+ E: m(A) . log,L|Al] &)
ACX
_HD(m) = - E: n(A) . LnCPLCAY] (3)
ACX

where Ln denotes the Napierian ltogarithm,

where m denotes a basic probability assignment, i.e. a set function from P(X) (the set

of subsets of a finite universe X) to [0,7] such that

n(@) = 0 : E: m(A) = 1 %)
ACX

where |A| denotes the cardinality of the ordinary subset A and where Cr and Pl

are the credibility and plausibility functions defined from m by
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Crem = ) n® ;P =) n®) s (5)
BCA ANB#D
A subset A such that m(A) > 0 is called a focal element.
The measure HC was introduced by Héhle [9] and as explained in [6] can provide
an estimate of the amount of confusion between the focal elements of m (HC is
zero only when there is one focal element and is maximum when the weighting ex-
pressed by m is equally shared among a maximum number of focal elements which

are not included in each other).

The measure HI was introduced by Higashi and Klir [8] in the setting of
Zadeh's possibility measures [15] (a particutar case of plausibility functions)
and extended to Shafer's framework in Dubois, Prade [4]. HI provides an estimate
of the imprecision of the focal elements since HI is zero only if all the focal
eltements are singletons (which corresponds to a maximum of precision and turns
out to be the case where m reduces to a regular probability density) and HI is
maximum if is such that m(X) = 1 (the universe is the only focal element, which
corresponds to a situation of total ignorance). HI can be viewed as a weighted

Hartley measure [8].

The measure HD was introduced by Yager [131 and provides an estimate of
the disjointness of focal elements, since HD is zero only when the set of focal
elements has an intersection which is non-empty and HD is maximum if m reduces
to a probability density (the focal elements are singletons and thus are all
disjoint). HD is zero in particular when the focal elements are nested (i.e.
they can be linearly ordered with respect to set inclusion), i.e. when the plau-

sibility function is defined from m is nothing but a possibility measure [3], [5].

In this short note we study additivity and monotonicity properties which
are not presented in [61 (except for HI in the particular case of possibility
measures), as well as the multiplicative behavior of a measure of specificity
previously introduced by Yager. We need to have extended definitions for the
concepts of projection and Cartesian product in order to be able to present ad-
ditivity properties and the extension of the concept of set inclusion in order
to introduce monotonicity properties. We first consider additivity issues with
the necessary perequisites ; then we give a background on inclusion in the frame-

work of Shafer's evidence theory and discuss monotonicity properties.
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2 - Projection, Cartesian product_in_Shafer's evidence theory

Let m be a basic probability assignment on XxY. Its projections on X and Y

are respectively defined by

v ACX, mX(A) = E: m(S) ; ¥ Bcy, mY(B) = E: m(S) (6)
A=proj(s;X> B=proj(S;Y)

where proj(S;X) and proj(S;Y) denote the projections of S on X and Y respectively.

Thus the focal elements of My (resp. mY) are just the projections on X (resp. on

Y) of those of m. This projection coincides with the projection of a possibility

distribution as defined by Zadeh [15], when m is equivalent to a possibility dis-

tribution. See Shafer [113].

Given two basic probability assignments my and my on X and Y respectively,

their Cartesian product m = my XMy is defined by (see Shafer [111)

Y ACX, ¥ BCY, m(AxB) mX(A) . mY(B) 0

where the focal elements of m are only obtained as Cartesian products of focal
elements of my and My - (7) can be viewed as a direct application of Dempster's
rule of combination [1] [10] when we consider the combination of the cylindrical
extensions of My and my on XxY. However note that (7) does not coincide with
Zadeh's definition of Cartesian product [2] (where min is used instead of the
product) when m is equivalent to a possibility distribution, since (7) entails

PLL{(x,y)}) = PLX({X}) ; PLY({y}).

3 - Additivity properties

We need the following

Lemma 1 : Let f be a set function such that

WA, UB, f(AB) = f (M) . (B

Then, the following equality holds

E: mq(A).mZ(B) . Ln(f(AxB)) = E:m1
A,B A B

(A).Ln(f1(A)) + E:mZ(B).Ln(fZ(B))

where m, and m, are two basic probabitity assignments on X and Y respectively.
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Proof :
E:m1(A).m2(B).Ln(f(AxB)) = E:m1(A).mZ(B)[Ln(f1(A))+Ln(f2(B))]
A,B A,B
= E:mq(A).mz(B).Ln(f1(A)) + E:m1(A).m2(B).Ln(f2(B))
A,B A,B
= Zqu(A).Ln(f1(A)) .QZ mz(B)]+ m2(B).Ln(f2(B)) .QZ m1(A)]
A B B A

m1(A).Ln(f1(A)) + E:mZ(B).Ln(fZ(B)) (due to the normalization of m, and m2).

1
» [~

B Q_E.D.
We have
. [AxBl = |A] . |B]
. Cr(AxB) = Crx(A).CrY(B) (see Shafer [111)
. PL(AxB) = PLX(A).PLY(B)

where Cr and PL are defined by (5) from m (obtained as the Cartesian product of My

and my defined by (7)) and where Crx

(5) from my (resp. mY). Then using lemma 1, the following additivity properties

can be easily established

and PLx (resp. CrY and PLY) are defined by

HC(mXme) = HC(mx) + HC(mY) (8
HI(mXme) = HI(mX) + HI(mY) 1))
HD(mXme) = HD(mX) + HD(mY) (1))

Remark : Yager [12) introduced a so-called specificity measure for possibility
distributions, which has been extended to any kind of basic probabitity assign-
ments [131, [4]. This index is defined by
Sp(m) = E:m&él kB
= 1Al

Sp provides an estimate of the precision of the focal elements since Sp is maxi-
mum (i.e. is equal to 1) if all the focal elements are singletons and is minimum

(then equal to —1—) in case of total ignorance. Note that HI and Sp have opposite
IX|
behaviors, the former estimates the imprecision and the latter the precision. It

can be easily checked that Sp satisfies the multiplicative property :
Sp(mxme) = Sp(mx) . Sp(mY) 12

Indeed :



bs

my (A). my (B) m, (A) mY(B)

TR

E: m(AxB) _ E:

A,B | AxB] A,B 1A

4 - A_sub-additivity property of HI :

Besides we have the following sub-additivity property for HI
HI(m) < HI(mX) + HI(mY) (13>

where My and my are obtained as the projections of m on X and Y respectively.

Proof :
HI(m) = ZmX(A).LongIA]] - Z< Z m($)) . Log,L|Al
ACX ACX A=proj(S;X)
= E: E: m(S).Logz[Iproj(S;X)IJ
ACX  A=proj($;X)
= E: m(S).LongIproj(S;X)IJ.
SEXxY
Therefore
HI(m) + HI(mY) = E: m(S).Log2 .lproj(s; |1

SCXxY

> E: m(S).L092[|S|] = HI(m)
SCXxY Q.E.D.

Note that when m = m,, xm (13) holds with equality.

YI

distributions

The specificity measure Sp defined by (11), in general does not satisfy the

super-multiplicativity property
Sp(m) > Sp(mx) - Sp(mY) 14>
which would be analogous to (13), m being at least precise as the Cartesian pro-

duct of its projections My XMy -

Counter—example of (14) :

X = {x1,x2,x3}, Y = {y1,y2,y3}. m is pictured on Fig. 1 and defined by



1 = A
Hh = 1=\

e m({ (x
A m({(x

T Then

), (x
), (x

1773
3774

1772
2771

1]

mx({x1})
mY({y1})

A mx({(XZ’XS)}) = 1-)
1-x mY({(YZ'YS)}) = A

We have

(1-1) _ 1)

1-A
N
y- - Sp(mx)
——— X
3 Sp(mY)

It

N> >
~
N
>
~

) = A -1
Figure 1 Sp(m) = > + 5= 5

-1 =251 : -
For A = 5 we have Sp(mXLSp(mY) = 76 > 5 = Sp(m), which contradicts (14). It can

be checked that, ¥ A € 0,13, Sp(m).Sp(m,) = %(1+A)(2—X) > % = Sp(m). Note that
on this example HI(m) = HI(mXme), i.e. a Llimiting case of (13).
However the inequality (14) stilt holds if m reduces to a possibility dis-

tribution.

In case of a possibility distribution the focal elements are nested. Let
1

lproj(Fi;X)I
. Then in order to establish (14) 1in

Fi € ... € F be the r focal elements of m defined on XxY. Let s. =

and t. = 1 . We have s..t. < 1
YT TR

i i
iprOJ(Fi,Y)l ;

. . .. .. . A
this particular case, it is sufficient to prove, denoting Aﬁ = m(Fi),

r r
C) hies) L E: Aoot.) < §: X..s..t. (15)
- 1 1 1 1 - 1 1 1
' i=1 i=1

r
since E: Xi . S Sp(m) is an upper bound of the right part
[F. |
i=1 1

of the inequality. Due to the fact that the projections of the focal elements

are also nested, we have s, > ... 25 2> 0 and ty 2 .an 2t 2 0. With A; =
Aot
—— the inequality (15) can be rewritten




70

(16)

—J

r r
Z) Ki.s. E:
1=1 1=1

r r

where E:X! = 1. Note that A! > A, (since E:X..t.
i 1 - 1779
i=1 i=1

I
1
-

—

Aoty = t1) and A' <A
r="r

r r
(since Eﬁxi.ti > E:Ki.tr = tr)' More generally it can be checked that if
i=1 i=1

At > A., then ¥V j < i, A! > A, and if
1 1 ] 7 )

IN

X% Xi, then Y3 > 1, X' Kj since the t 's are decreasingly ordered. Thus,
vie E1,k],%; > X and ¥ i € [k+1, rﬂ A' < A;. Since the s.'s are decrea-

singly ordered, the weighted mean of the S, 's computed with the X%'s is then

=~
~ I

greater than or eqgual to the one computed with the Ai's. Therefore (16) holds.
Q.E.D.

Remark

When My and my reduce to possibility distributions ﬂx and ﬂY’ there 1s ano-

ther way, apart from (7), for defining their Cartesian product, namely by direc-
tly combining the two possibility distributions with the min operation ; let
mx®mY denote the Cartesian product of My and My, defined as the basic probability
assignment eguivalent to min(ﬂx,ﬂY). Then HI still satisfies the additivity pro-
perty [8]1 [6]

HI(mX®mY) = HI(mX) + HI(mY) a7

Note that due to (9) and (17) the results of the two combinations mXme (using

Dempster's rule) and mx®m (using min operation on possibility distributions)

Y

have exactly the same amount of imprecision in terms of HI, but mx®mY reduces to

a possibility distribution while My XMy does not in general.

As shown by the following counter—example, we have not an analogous proper-
ty for Sp, namely

Sp(mx®mY) # Sp(mx).Sp(mY).
X = {x x3} ;omx) =1, Ty (x5) = 0.8, m,(xy) = 0.5

17727 1 2 s T3
Y = {y1,y2} ;omyly) =1, M, (y;) = 0.6
Let ﬂx’Y = mindm ,ﬂY). We have
nX’Y(x1,y1) =1 ; Ty (xz,y1) = 0.8 ; Ty (x1,y2) = (xz,yz) = 0.6 ;

i (x3,y1) =Ty (x )y = 0.5.

X,Y 3”2

In [4] it is shown that the expression (11) of Sp can be rewritten, when

m reduces to a possibility distribution T,
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n

E: ﬂ(xi) - ﬂ(xi+1)

Sp(mﬂ) = i 18)
i=1
where the n elements of X are decreasingly ordered according to T and where

Tr(xn ) = 0 by convention. Then in our example we have

+1

1-0.8 , 0.8-0.5 , 0.5-0 . , <1,

1

Sp(m_ )
Tx

Splm_ )
Ty

Spm ) =
X, v

0.8-0.6 , 0.6-0.6 , 0.6-0.5 , 0.5-0.5 , O.

5
2 3 4 5 6

12
14

0.411 # Sp(mTT ) . Sp(mTT ) 0.361

X Y

6 - HC_and HD are_not_sub-additive

The measures of information HC and HD do not satisfy a sub-additivity pro-

perty similar to (13).

Counter—example :

Let us consider the basic probability assignment m and its projections m
) = 1-x, and S,nS, = 0.

X
and my pictured on Fig. 2, where m(S,) = X, m(S

1 2 172
Y Then mx(proj(S1;X)) = A
s, and mx(prOJ(SZ;X)) = 1-A with
- B proj(S.;X)Cproj (S, ;X) ; m,(proj(S,,YN = A
IﬁElg 27" — 1 Y 1
qﬂ"‘ 1 ‘ and mY(proj(SZ;Y))= 1-A  with
‘ proj(SZ;Y)Eproj(S1;Y). Then we have the
; i following results
- | :ﬂ > X
i
Figure 2

""""""" e T T e
I | | ] ] 1 |
% Cr(S)i PL(S)ECrx(proj(S;X»iCrY(proj(S;Y))EPLX(proj(S;X))i PLY(proj(S;Y)) i
i

>
et o
-

Fo———————t
—

po———————p
_

Then HC(m) = ~(A ln A + (1-A).ln (1=X)) = HD(m)
HC(mX) = -(1-0.ln (-0 = HC(mY)
The sub-additivity property will be violated if
- HC(m) = + A . In A+ (1=ANLn(1=0) < + 2(1-A) . n(1-A) = - HC(mX) - HC(mY)



i.e. if Alln A < (1= n(1=-0)
i.e. if A < 1-X, which is feasible.
Clearly we have
¥ A, HD(m) > HD(mx) + HD(mY) =0
Q.E.D.
However if m reduces to an ordinary probability density on XxY, HC = HD is
just Shannon entropy and in this case the sub-additivity property holds.

7 - Inegualities_between_the_measures_of_information of m, m, and m

X Y

Since |S| > max(|proj($;X)|,|proj(s;Y)|), it can be easily checked that

HI(m)
Sp(m)

max(HI(mX),HI(mY)) “M

>
< min(Sp(mX),Sp(mY)) 20

For establishing inequalities which are similar to (19) for HC and HD, we need

the following results.

Y SCXxY, Cr(S) < min(Crx(proj(S;X)),CrY(proj(S;Y))) @21
¥ ScXxY, PL(S) < min(PLX(proj(S;X)),PLY(proj(S;Y))) (22)
where Cr, Cr>< and CrY are respectively defined from m and its projections My
and My
Proof :

Crx(proj(S;X))

I

E: mX(A)

ACproj (§;X)

) ) mm

Acproj (§;X) A=proj(T;X)

E: m(T) > E: m(T) = Cr(S)
proj(T;X)Cproj (5;X) TcS

4

Simitarly it can be shown that

PL, (Proj(s;X)) > PL(S)

Q.E.D.
Then it can be checked that
HC(m) > max(HC(mx),HC(mY)) (23)
HD (m) > max(HD(mx),HD(mY)) (24)

where my and mY are the projections of m.
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Proof :
HC(mX) = - E:mX(A).Ln ECrx(A)]
ACX
= - E: ( E: m(S)).LnECrX(A)]
ACX  A=proj(§;X)
- - Z ( z m(s). nCCry (proj (;X))1)
ACX  A=proj(§;X)
< - E: m(S).LnCCr(S)] = HC(m)
SSXxY
A similar proof holds for HD. Q.E.D.

8 - Generalized inclusion_in_the framework of_Shafer's_evidence_theory

Several extensions of the idea of set-inclusion can be contemplated in the
framework of Shafer's evidence theory. See Dubois, Prade [7] for a complete dis-
cussion. In this paper, we shall only consider the following strong extension
of the idea of inclusion. Given two basic probability assignments m and m' on X,

by definition

mcm' <=
i) YAE€EFm, IBEFn), B2A
ii) vB &€ FmH, 3IAEFmM, ACB

ity Jw s 28 x 285 00,17, with w(A,B) =0 Y AZFm, or BZ Fn")

such that ¥ A € X, m(A) = Z: w(A,B)
B:ACB

m'(B) = z: w(A,B)
A:ACB

where F(m) and F(m') are the sets of focal elements of m and m' respectively.
This definition turns to be equivalent to the one proposed by Yager in [14] ;
see [7]. When m and m' reduce to possibility distributions, this generalized
inclusion turns to be the usual fuzzy set inclusion (pointwisely defined as an

inequality between the membership functions).

9 - Monotonicity properties

We have the following results

m<m' > HIm < HI(m") (25)
mCm' =2 Spm > Splm') (26>
mCm' > HD(m) > HD(m") 27
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tion such that A € B > f(A) < f(B),

IN

mCnt s ) mA) . FA) RERGRIOR
ACX ACX

E: m(A) LT (A E: ( §: w(A,B)) . fC(AD

ACX ACX B:ACB

Indeed

IA
~1

E: w(A,B) . f(B)
ACX B:ACB

Z W(A,B).f(B) = Zm'(B).f(B)
BCX  A:ACB BCX

0
™~

Q.E.D.

Clearly if A € B then |A] < [B]| and 1/]A] > 1/|B]. Therefore (25) holds and sin-

ce we also have,for a function g such that A € B > g(A) > g(B),

mCmt e ) m(A).g(A) 2 ) m'(8).9(8), (26) holds to.
ACX ACX

Besides in [7] it is shown that

mcm' >4 AcX, Cr(A) > Cr'(A) and PL(A) < PLT(A) where Cr' and PL' are de-
fined from m'. Then we have

if m < m', then -In[PL(AY] > =InlPL'(A)]
Therefore if A C B, then -(n[PL(AYT > = InlPL'(B)]. Finally using a proof similar

to the one of lemma 2, we obtain HD(m) > HD(m'). Q.E.D.

The monotonicity properties (25)-(26) are satisfying, since the idea of im-
precision and of specificity are very related to inclusion. It generalizes pro-
perties which were already known in case of possibility distributions. (27) is
also intuitively satisfying, since the disjointness of focal elements cannot
decrease when the basic probability assignment becomes smaller in the sense of

the generalized inclusion.

When m € m', there is no inequality between HC(m) and HC(m') as shown by

the two following examples pictured on Fig. 3.a and Fig. 3.b :
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£ a) m'(F) =1
OO m(A)+m(B) = 1;AC F;BC F.
Clearly m € m' (since w(A,F) = m(A) and w(B,F) = m(B) ;
A B
HC(m') =0

Figure 3.a and HC(m) = -Im(A)An(m(A)) + m(B)Ln(m(B))] > O

b) m'(F) + m*'(G) =1
m(A) =1, AC FNG
Clearly m € m' (since w(A,F) = m'(F) and w(A,G) = m'(G)),
HC(m) = O
and HC(m*) = =Im(Flln(m(F))+m(G) In(m(G))] > O.

Figure 3.b

The non-monotonicity of HC with respect to inclusion is not very surprising since
the amount of confusion between focal elements estimated by HC, is not clearly re-

lated to the extended inclusion we introduce between basic probability assignments.

10 - Concluding remarks

In this paper we investigate the additivity and monotonicity properties of
different measures of information which have been recently introduced in the
framework of Shafer's evidence theory. The existence of these properties shows
that it is possible to extend information theory in a nice way beyond its pro-
babilistic setting. Moreover, it is noticeable that different measures of infor-
mation are necessary in order to characterize the information which can be re-

presented in Shafer's evidence theory.
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