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The concept of probabilistic independence is generalized into

a decomposability criterion by means of a two-place operaticn on the unit
irrerval. The set of candidate operations is characterized via natural
axicms owing to a recent result in the theory of functional equations.
Tuis result is applied to the construction of utility functions, by re-

Laxing Von Neumann and Morgenstern ' s axiom system.

1 - INTRODUCTION
For many authors, the uncertainty pervading decisions can be repre-
sentad Dy probability measures on the set of possible consequences of
these decisions. Justifications of the probabilistic setting are based on
the betting behavior interpretation or qualitative probability relations

[s]. tnder the subjectivist nmoint of view the concept of probabilistic

wieosndence 1s sometimes difficult to justify. This is because indepen-
derics is understecod, in the setting of statistics, between experiments.
But in the subjectivist setting only independence between events can be

detined, and the usual definition

where A, B are subsets of £, and P i3 a probability measure, may appear

toc restrictive outside a frequentist framework.
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A agualitative view of independence is developped in Fine [2J which
{eads to a decomposability criterion. Namely, A and B are separable if and

enly if there is an operation * on [0,1] such that

PA N B)Y = PLAY*P(B) (2)
i.e. PCA n BY can be computed from the knowledge of P(AY and P(B). In the
following, we study the possible candidates for operation *, and come up
with a parametered family of semi-groups on [0,1]. On such a basis the

Juestion of constructing utility functions is reconsidered.

2 - SEPARABILITY OF JOINT EVENTS

ihe following requirements are natural for operation * :

i) commutativity

i1} associativity

1910 ¥ oa € 00,11, a*1 = a, 0%0 = 0

) Voa, b, ¢, d€l0M] &a>b, c>dsa*c > bxd
v continuity

vi) Woa e (0,1 a*a < a

Commutativity stems from A n B = B n A, Associativity appears if one

constders separability of n events A1...An :¥Ym<n, ¥ k1"'km <n,

N...n A ) = P(A, D*P(A, dx,_ *xP(A, ) (3
< . k k k k

! 2 m 1 2 m
Associativity of * is due to that of set—intersection. Axiom 1ii) is due
o Anil=A 0n@ =0, and the fact that A and 2 are independent. iv) is
natural 11 we interpret a = P(A), b = P(B), ¢ = P(C), d = P(D) and A C B,
£ < Db, where A and B, C and D are separable, respectively. Continuity is

alzo a natural technical requirement.

Under i)-iv), operation * cannot be choosen but among triangular norms
v43. which are semi-group operations on the unit interval, monotonically
wereasing in both places, with identity 1. Triangular norms are all such

tha
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T (a,b) < axb < minla,b) (4)

whers T (a, bl

iy h & 1) P = ( = -
0Va, bel0,D, (D =102 = a

The main continuous triangular norms, apart from min and Tw are the

oroduct and a*b = max (0,a+b-1), also denoted Tm-

Axiom vi) 1s to account for the situation when P(A) = P(B) = a3
PCA-3) # 0, P(B-A) # 0. Then clearly P(ANB) < a. The separabitity of A and
& {eads to admit axiom vi). A triangular norm satisfyiﬁﬁi>*vi) is called
Archimedean and is pseudc-additive in the sense that for there 1s a con-
tinuous, strictly decreasing mapping f : [£0,13 » [0,+w) such that f(1) = 0,

and (see [67)
Flaxh) = f{a) + f(b) (3

dneration * cannot be arbitradH choosen among triangular nerms, First

note that Y A, B
max (C,PCAZ+P(B)~1) < P(A n B) 6)

The equality (Tm—geparability) is valid when A and B simultaneously
occus as seldom as possible. With a subjectivist point of view, the equa-
{1ty expresses a pessimistic opinion on the simultaneous occurrence of A

ari 2 krniowing PCA) and P(B).

G the other hand, P(A n B) is bounded from above by min(P(A) ,P(B)).

The minimum operation violates axiom vi). Indeed P(A n B)Y = min(P(A) ,P(B))

expresses a strong dependence between A and B @ if P(A) > P(B), it means

that A cccurs at least wherever B occurs;

nicn about the joint occurrence of A and B since it amounts to claiming

it expresses an optimistic opi-

tha. f the least probable event occurs then the other event should occur
toc. Hence *-separability ranges from maximal exclusiveness (Tm—separabi"
t9:w0 ro strong dependence (min-separability). The usual independence (x =

product) expresses a2 moderate opinion between these extreme cases.
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So far, we have not used the additivity law of probability measures.

wse it now in the following

temmz i @ if A and B are *-separable then there is an operation O such

that A and B are O-separable.

Froof : P(A N B) =1 = P(AI-P(B) + P(A)*P(B)
= P(AYHP(BY-1 + (1-P(A))*(1-P(B))
P(A) O P(B). Q.E.D.

H>

As a consequence, operation O also belongs to Archimedean triangular
notrms, and is thus associative., Associativity of cperation C implies asso-~
ciativity of operation at+b - a*b, given that * is associative. This pro-
perty is not self-evident and severely restricts the choice of * among
Arihimedean triangular-norms as shown by Frank [3]. Indeed, he has shown

that the only Archimedean continuous triancular norms such that a*b and

a4t - a*b are simultaneously associative are defined by
- a b .-
sb = af b = Loqg,'w + if'—-ﬁii—-l’J s >0 €0

= s~

for s = 0, 1, +o we respectively recover ax*b = max(0,atb-1) a.b, and

ria,b). Note that * is strictly monotonic and satisfies (5) with fs(a) =

{0y =, for s ¥ 004w, Now it is easy to check that if A and B are *-
I o
S
separable for * = Fo then

LA osand B are Fe ~separable, i.e. P(A NnB) = P(M) F P(B)
. A and ﬁ/ as well as A and B, are Fq,"separabte with s* = 1/s
PCA N B) = P(AY-PCA n B)Y = PAA) - P(AD FS P(B)

=) - D(E
PCR) F1/S P (B

i

for instance PCA N B) = min(P(A),P(B)) = P(A n B) = max(0,P(A)+P(B)=1)

¢

£ snd B as well as A and B are both *~separable if and only if they are

torh independent (& - product),
Nt e guantity as+b - a® b ois equal to 1- (1-a)F5(1-b), and iz called
~~~~~~ . 3 :
. briangular conorm,
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4 - FXTENSION OF Von NEUMAHN-MORGENSTERN AXIOMS OF UTILITY

Let X be a set containing the possible consequences of potential deci-
sicns. A set X of uncertain consequences is built over X, and is such that
KTk ox,y TX o Ggp,y) ©X
where (x,p,¥? is short for the uncertain consequence where x occurs with
orebability p oand y with probability 1-p. The choice among potential decisions
is guided by a preference ordering > over uncertain consequences. > 1S Suppo-—
sed o be a weak order [4], i.e. is transitive, reflexive, and ¥V x,y € X,

. > and ~ respectively denote the strict ordering and equiva-

~
[N

tesoo constructed from >, Notice that :

X,y ~ ox o (x,pLy) ~ (y d-p,x).
The ‘undamental axioms of utility theory are then
U1 o ~y » 9 p £ L0111, ¥V 2 € X (x,p,2) ~ (y,p,z).

Ut x>y » W op € (0,77, x> (x,p,y) > vy.

o
[N
e
¥
-
A%
i~

=2 3 p ¢ 10,10 y ~ (x,p,z)
‘/(XIDI\))/C!IY) ~ (XIpQIY)'

Gives these axioms,

it is proved in L£71 that a utility function u : X + IR

axts0s such that x >y Aff ulx) > uly), xe~y iff ulx) = ulyl), and

uix,p,y) = p oulx) ¢ {=pluly) 8

Moicover, w is an interval scale [4]1.

Here we shall focus on axiom U4, which the authors of [7] wished to
mocify, but, to them, "the mathematical difficulties seem to be considera-
ble Zp. 632). The uncertain conseguence ((x,p,y),d,y) can be viewed as the
result of two successive decisions ; the first one enables the second one

with probabitlity and the second one leads to consequence x with probabi-

£

I d
{“ty . On the whole, in this L-stage decision process, x is gotwith proba-
bitity p.g and v with probability 1-pg, as long as the events following the

/

sions are independent. Whether this assumption is verified i1s sometimes

un to the decider's judgment.

He may consider on the contrary, that a favorable issue to both deci-~

sirns (i.e. yielding x) is very uniikely, and then only grants a probability
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maxiptq-1,0Y to x. Or he is very optimistic and admits that 1f the most
risky decision reaches its goal, then so will the other ones, and so he
arants probability min(p,q) to x. More generally, he takes for granted

pust S r Va4

that PG = pkg where * is a Frank triangular-norm. Hence we relax U4 into

Yy

ety CUx,ouy)d,a,y) ~ X, p*q,y)

5 - CONSTRUCTION OF GENERALIZED UTILITY FUNCTIONS

Following the same reasoning process as in [71, we can prove the fol-

Lowing results

Lewrs 200 Up,o & (0,10, ¥ x,y ©X

~7

o

> g @ (X,D,)’) > ()(,J..‘f},)’).

Proct @ Applying (U2) = x >y 3 {x,p,y) >y >Y r € (0,1, (x,p,y) > (x,p,ydr,yd
- {x,p*r,q) due to (U&'). it is now enough to solve eguation p*r = qg.
Using (5, r i3 unique and is equal to f;‘(%(q)—ﬁgp)) for s # +w,1,»0 ;

= q if % = ming r:ippff-ﬁzmemt(;r:1—F+7 ff %:7; . Q.E.D

Vp,a € (0,10 0 x £y €X, x>y and (x,p,y) ~ (x,q,y) imply p = g.

Eroct o Obvious with lemma 2

194

Lerna 4 2 Y og, 1fp > and x >y then there is a such that

(Lo, vi,a,(r,y)) ~ (x,a,y)., o€ [0,1].

Procd ooz » Goo,y) > (x,r,y) > v, and there is some t such that (x,p,y)
(x,tx,r,y2) using lemmz 3.
1={1-r)*(1~-t)
since * 15 a fFrank t-nocm. Hence we must find t such that
(M=r)*(1-t) = 1-p
wtich yields t = 1~§?@(1-p>mfs(1—r>)é p © r. This is a kind of sub

fraction since t = D for r = p. Now it is easy to check that

Mow (x,t,(0,r,y)) ~ (X, t+r=thr,y), with thr-t*xr =
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(C,pLyd,a,(x,r,yd) ~ (x,pbr, (x,r,v)) alx,r,y))

~ {x,(plr)*q, (x,r, v)) . (U]

~ (x, (pEr)sg+r—(rOp)*g*r,y)
Herice o = (pOr)*r+r—-{(pOr)*xq*r ()
[t is unlgue dae to lemma 3, Q.E.D.

Now 15 p < r, using (x.p,y) ~ {y,1-p,%}, we come up with the some expres-
sien for o, where g is changed into 1-a, r inte p and conversely.

For s = 4, i.e. * = product we get a = pg + (I-pdr Y p,r.
This is the usual assumption of independernce, and it suggests the usual

torm of etility.

T,
p
C
N
i
]
AY
-
.
D

e. a*b = max(a+b-1,0), we get ¥V p,r

o = min{max{r,,q+p=-1) ,max(p,r-g)) oM
th ¢ othe pessimistic case.
For o = 40 j.e. a*b = min(3,b) we get, when p > r, a = med(p,qg,r)

whore med stands for median; it is noticeable that the median is found here
inttead of an expectation-like expression (a weighted mean) in the usual

A median 1s indeed the qgualitative counterpart of a mean. More gene-

rativ for ¥ = min we get

o= mindmed(p,q,r) .med{(p,1-q,r)? D
Mote that when g = 0, o = r, and when g = 1, a = p, so that o moves from r
to p owhen g moves from O to 1. Actually, for 0 < s < +»_, o is strictly in-

creasing with o when p > r.

in the following let us assume that X contains a maximal element x, and

1
2 micimum etement xo. We introduce a function u_ : X - [0,11 with us(xD) =0,
1 2
won 2= 0, u {x) = a as soon as x = (x1,q,xo). Parameter s is that of the

separability operation *.

be following result 1s obtained :
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Theorem 1 0 Y s >0, s < 4o, then

1N b 7 vY > \ . 5
fxory, uS(A, > us(/) (12)
x>y, ¥q € L0,1]
v Goa,y) = (u G08u {yNxgru (W =(u (x)0u_(yddxgru_(y) 13
< g S s S S S
{12) s obvious by using x = (x1,p,x03 y = (x1,q,xo)g
(13) s obvicus using the expression of o from Lemma 3.

for s = 1 we get the usual utility function (8).

Now changing the scale L0,1] inte I = [ap,a13 comes down to changing
J

opecations & = C,%, etc... into o in I, such that ¥ a,b & [80’31]'
R . o aay B b~aD 8
& Oy D zh + \dq—do) T 9 34,
-1 70 10

and atitity function u_(x) into u _{x,I) =(a,-adu_{x)+a ju_C., 1) also satis~
S s 1 70" s 0! 7s

firs (1Y) and a generalized from of (13), changing ©, * and ¢ into GI’ *I

ane 1.qgta

O(?“q} respectively. We can also prove a unicity theorem

Tneorem 2 1 1f u
Lavoren ¢ s

(17, and alsc (12), then ¥ a,B : uq(-,I) = aus(.,l‘)+6.

(.,I) and us(_,I’) = u{ satisfy the generalized form of

N3

rhere is an increasing bijection f between u and u' such that

f(ao) = a'o, f(a%}and ut = f O u. Particularly

‘(ué xi,q,xo)) = f((a1—aozq+ao))
= ug(xq,q,xo) = Ef(a1)—f(ao)]q+f(ao)

Hepce i3 of the form f(a) = aa+f ¥ a € I. Q.E.D

1> is an interval scale.

These results indicate that it is possible to build utility functions
Wit hout the independence assumption, only assuming a separability condition.
Noi - that theorems 1 and 2 are valid only for 0 < s < #=, Indeed for s = 0

~,

“raosow 4w, (12) coes not hold i.e. we can have x > y and u(x) = uly).
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s umptions may be tha*t of decomposable measures (11 where the adaitivi-
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g1

oCcurs

= 4o, x = (x1,p,x0) >y = (x1,r,x0) and 0 < p < min(p,r) =r

s = 0, with the same conventions and 0 < g <1 + r-p,

bl
it

Lhers observe @ ou (x,q,y) = r = u_(y), while (x,g,y} > y.

S

in such cases, one may wish to relax axiom U2, changing > into 2.

hehavier of the utility function means that if x becomes very unlikely

Ny the usility of (x,q,y) cannot be distinguished from

iy (with certalintyl. 0% course this attempt to extend the concept

ity could be considered in the situation when X has no maximal nor

D

Lements. Maorcover, in this approach we have taken for granted the

&

of probabilities of consequences ; modern approaches (e.g. [41)
uct hoth probability and utility functions from puréky qualitative
nts. However, as Fine [2] pointed out, to justify additive probabi-

equires the use of complicated or un-natural axioms. A more intui=-

setting for extending utility theory in the spirit of separability

tv ax1om of probability measures is generalized by means of a triangular
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