ON SOME PELATION BETWEEN FUZZY PROBABILITY MEASURE
AND FUZZY P-MEASURE

Krzysztof PIASECKI

Department of Mathematics, Academy of Economy, ul. Marchlewskiego 146/150, 60-967 Poznań, Poland

Let $\mathfrak{F} = \{\mu : \Omega \to [0,1]\}$ be a soft fuzzy \mathfrak{F} -algebra i.e. fuzzy \mathfrak{F} -algebra (see [1]) uncontaining the fuzzy subset $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\Omega} : \Omega \to \{\frac{1}{2}\}$. Let us compare the following notions:

Definition 1: A fuzzy probability measure is a mapping

such that

$$m(0_{\Omega}) = 0$$
,
 $m(1_{\Omega}) = 1$,
 $\forall (\mu, \nu) \in \mathbb{Z}^2$ $m(\mu \nu \nu) + m(\mu \nu \nu) = m(\mu) + m(\nu)$,
 $\forall \{\mu_n\} \in \mathbb{Z}^N$ $\{\mu_n\} \uparrow \mu \Rightarrow \{m(\mu_n)\} \uparrow m(\mu)$. [2]

Definition 2: Each mapping

having the following properties:

- for any $\mu \in \mathcal{F}$ $p(\mu \vee (1 \mu)) = 1$
- if $\{\mu_n\}$ is finite or infinite sequence of pairwise W-separated fuzzy subsets from $\mathbf{5}$ (i.e. $\mu_i \le 1 \mu_j$ for each pair (i,j) which $i \ne j$)

then

$$p\left(\sup_{n}\left\{\mu_{n}\right\}\right) = \sum_{n} p(\mu_{n})$$

is called a fuzzy P-measure. [6]

As we know, the fuzzy P-measure are the unique fuzzy probability measures satisfying the Bayes Formula [6,7]. The next relationship between measures mentioned above, will be presented in this paper.

Let $\mathbb{R} = [-\infty, +\infty]$. Then we have.

Definition 3: A fuzzy relation "less on equal" FLE is a mapping $Q: \mathbb{R}^2 \rightarrow [0,1]$

such that

$$g(x,y) = -g(y,x),$$

$$g(y,x) + g(z,y) \leq 1,$$
for each $(x,y,z) \in \mathbb{R}^3$ which $x \leq z$. [3]

Any FIE generates a fuzzy relation "less than" given by the identity

$$g_s(x,y) = 1 - g(y,x)$$
for every $(x,y) \in \mathbb{R}^2$ [3].

Let g be a fixed FLE.

Definition 4: Each mapping:

$$\varphi \langle a,b \rangle : \mathbb{R} \to [0,1]$$

defined by the identity

$$\varphi(a,b)(x) = \psi(a,x) \wedge \eta(x,b)$$
for every $(a,b,x) \in \mathbb{R}^3$, $(\psi^-,\eta) \in \{\xi,\xi_s\}^2$, is called a fuzzy interval. [4]

We note, that the above definition describes all kinds of intervals on real line R generalized for fuzzy case. Among other things, it defines

- if
$$\psi = \xi$$
 and $\varrho = \xi$ then $\psi(a,b) = \psi[a,b]$;
- if $\psi = \xi$ and $\varrho = \xi_s$ then $\psi(a,b) = \psi[a,b]$.

Let us suppose now, that FLE g is quasi-antisymmetrical, continuous from above and it unfuzzily bounds the real line (see [3]). Then there exists the smallest soft fuzzy 6-algebra containing all fuzzy intervals $\psi[-\infty,a[$, β_g say [4]. If $m:\beta_g \to [0,1]$ is a fixed fuzzy probability measure on β_g , then we define:

Definition 5: The cumulative distributions function of fuzzy probability measure m is a mapping

defined as

$$\forall x \in \mathbb{R} \qquad F(x) = m(\varphi[-\infty,x[) \cdot [5])$$

Theorem 1: Each cumulative distribution function F fulfils the following conditions:

$$\forall (x,y) \in \mathbb{R}^2 \qquad x \leqslant y \Rightarrow F(x) \leqslant F(y) , \qquad (1)$$

$$\forall \{x_n\} \in \mathbb{R}^N \qquad \{x_n\} \hat{l} x \Rightarrow \{F(x_n)\} \hat{l} F(x) , \qquad (2)$$

$$\lim_{x \to +\infty} F(x) = 1 = F(+\infty) , \qquad (3)$$

$$\lim_{\mathbf{x} \to \infty} \mathbf{F}(\mathbf{x}) = \alpha > 0 = \mathbf{F}(-\infty) \quad . \quad [5]$$

Theorem 2: If a function $f: \mathbb{R} \to [0,1]$ fulfill the properties (1), (2), (3) and (4) then there exists the unique fuzzy P-measure $p: \mathcal{P}_{\mathcal{C}} \to [0,1]$ such that

$$\nabla \times c \cdot \mathbf{R} \qquad p(\psi[-\infty, \mathbf{x}[) = f(\mathbf{x}), \\ p(\psi[+\infty, +\infty]) = 0 \quad [8] \quad .$$
 (5)

More details about fuzzy P-measure p generated by function f we can find in [8]. If we take into account two above theorems, then we obtain finally thesis.

Theorem 3: For each fuzzy probability measure $m: \beta_{S} \rightarrow [0,1]$, there exists the unique fuzzy P-measure $p: \beta_{S} \rightarrow [0,1]$ satisfing the conditions (5) and

$$\forall x \in \mathbb{R}$$
 $p(\psi[-\infty,x[) = m(\psi[-\infty,x[)].$

By means of this theorem, the Bayes Formula can be applied for any fuzzy probability space defined by Klement et.al. [2].

Acknowledgments

This paper contains the result of the work in the Seminar on Fuzzy and Interval Mathematics directed by Prof. dr hab. Jerzy Albrycht.

References

- [1] S.Khalili, Fuzzy Measures and Mappings, J.Math. Anal.Appl. 68, 92-99.
- [2] E.P.Klement, R.Lowen, W.Schwychla, Fuzzy Probability Measures, Fuzzy Sets and Systems 5 (1981), 21-30.
- [3] K.Piasecki, On any Class of Fuzzy Preference Relations in Real Line - Part II, Busefal 21 (1985), 82-92.

- [4] K.Piasecki, On Interval Defined by Fuzzy Preference Relation, Busefal 22 (1985) (in print).
- [5] K.Piasecki, Fuzzy Probability Spaces Defined by Means of Fuzzy Relation "Less Than", Fuzzy Sets and Systems, (in print).
- [6] K.Piasecki, Probability of Fuzzy Events Defined as Denumerable Additivity Measure, Fuzzy Sets and Systems, (in print).
- [7] K.Piasecki, On the Bayes Formula for Fuzzy Probability Measures Short Notice, Fuzzy Sets and Systems, (in print).
- [8] K.Piasecki, Fuzzy P-measure on the Real Line, (to appear in Fuzzy Sets and Systems).