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Abstract

The purpose of this paper is to queote the method of the
set-embedding expressing the fuzzy seét, we open discussion
into the fuzzy fings. And we prove some fundamental proper-

ties and theorems.
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1. Preliminaries

We figst recall some basic concepts occurring in the papers (1,
denotes
2 ] for sake of completeness.In this paper X alwayg\a nonempty (us-
ual) set. P(X) will denote the power set of the set X. A fuzzy set
in X is a map A: X > [0,1] and F(X) denotes the family of all fu-

zzy sets in X.

1. Set-Embedding: Let H is a map of [0,1] into P(X), teH(t). H is
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called a set-embedding of X, if
ty <t, implies H(t,) 2 H(t,).
Nom let %(X) be the family of all set- embeddingsof X. Let u,
1, ¢ be the operatians in ?,(,(X), they are defined as follo@s:
H U Hys (HiUH2)(t) = H,(t) U Hy(t)

Hy () Hy s (HiaH)(t) = H,(t) 0 H, (%)

HC . HE(t) = (H(1 - t))€

%Hr : (%,Hr)(t) = %’ Hp(t)
m,"r : (Q,H,-)(t) = rfﬂl Hp(t)

2. BDecomposition Theorem T . Let LA €F(X), and H: [0,1) —
P(X),  tr=H(t), satisfies Ay SH(t) € A¢ , te(0,1) , then

1) A= Ut H(t) (that is, A(x) =ﬂ_\t{'](t/\H(t)(x)), H(t)(x)

ter)
is a characteristic function %H(f)(x) Of H(t)).
2)  t;<t; implies 1(t,) 2 H(t,) (that is, H ¢ U(X)).

3) At==;:gH(d) (t & (0,17)

Ae = U H(a) (te[o,i) )

o>t

(The proof of the Decomposition Theorem cf (1] )

3. Extension Principle: Llet f: X—*Y, xr>f(x).
1) Extension PrincipleI: f can induce f: F(X)—=F(Y),

A= f(A) =ﬁL[_'th F(A,) € F(Y)
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s F(Y) = F(X), B 7' (B) = L/ tF(B,) €F(X).
(where f(A¢) = {y|3Ix €Ay, v = F(X)Y, £7(Be)= { x| F(x) € Be})
f(A) is called the image of A and f"(g) is called the inverse
image. of B.

2) Extension Principle T : Let A€F(Xx), F(A) = tf(At)

telo]
and let B € F(Y), f~ (B) -“L‘{‘tlf(ﬂg)
3) Extension Principle W: If A € F(x), Ae = Hpy(t) € A,
t€00,11, then () =\ t F(1,(t)).
If B EF(X), Be cHy(t) €8, te[0,1], then
U(B) = Lt H(y(0).

4) The membership function of f(A) and £7(B) is f(A)‘3’=ﬂ\)/A(x)
~r ~ -~ 1',~

and f"(g)(x) = E(F(x)), respectively.

2. Fuzzy Subrings anh Fuzzy Tdeals

Let (X,+,+) isaring. R(X) and I(X) will denote the set of all sub-
rings of X and the set of all ideals of X, respectively., It is cl-
ear that I(X) & R(X) S P(X). We will follow a convention that ¢ €
I(X) = RrR(X).

DEFINTTTON 1. Let H €& Q{(X). H is called a fuzzy subring of X,
if H(t) € R(X) and 5=t§?{ut H(t) € F(X), 1 &€L0,1].

E(X) will denote the set of all fuzzy subirings of X.
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Let M & UL(X). N is called a fuzzy ideal of X, if
M(t) € I(X) and L’\/:f%ddt M(t) e F(x), tel0,1] . I(X)
Benotes the slet of gll fuzzy ideals of X.
The fuzzy subrings and the fuzzy ideals of X can be defined hy

the subring-embeddings and ideal-embeddings, respectively.

THEOREM 1 Let (X,+,+) be a ring, and let H, M €F(X), then:

1) H ER(X) 1ff, for te(0,1) , H, eR(X).

2) M €I(X) Iff, for t€[0,1] , M, €1(X).
Proof. 1) Let H ¢ R(X), then there exists a subring-embedding
H={H(t) | t€(0,1]} such that HEt) € R(X), te¢[0,1] , and H =
U t H(t). Therefore

tefol]

H,

M

L) H(®) €R(X), ter0,1]

Ho = X €R(X).

Conversely, let Hé€F(X) satisfying He €R(X) , t €(0,1] , then
{He(té [0,1]} is a sub-ring-embedding . Therefope H=Ut H, €&
~ telqn)
R(X).

It can be seen in a similar way that 2) holds. . //

THEOREM 2 Let (X,4~,-) B& a ring, and H, MeF(X), then:
1) H€R(X) iff, for ang x,ye¢X,
1) H(x = y) Z H(x) AH(y);

11)  H(xy) Z H(x) AH(y).
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2) /r\‘, 61()() iff, for any x , y¢€X,
i) M(x -y) 7 M) AN(Y);
1) HC xy ) 2 B0 VR
Proof. 1). i) Let HeR(X), then H, €R(X), t ¢ (0,11 . Let us ass-
ume t o= jj(x)/\ H(y). Then it follows H(x) 7 t, ﬁ(y)%t. So x € Hp ,yé&
He . Thus x - y €He . Therefore H(x -vy) Zz& = H(x)YAH(y).
Tt can be seen in a similar way that ii) holds.
eonversely, let H ¢F(X) satisfying i) and ii). let x,y&He , te
10,11 . Then H(x)Z?t, H(y)Z t. So H(x -y) Z H(x) A Hy) 7 and
H(xy) H(x) A H(y) zt. Thus x - y, xy & Ht . Therefore H.€R(X).
Thus H = Ut HtéR(x)

~ 0/]

Tt can be seen in a similar way that 2) holds.

NDEFINITION 2 tet (X,+,-) be a ring, and let a€éX.And let H =
fu(e) | tel0,11YeU(x) and =) £ H(t) € F(X). Then (a+H)(t) is
a residue class of X( (a + H)(t) = {a + x[x €H(t)} ,t€[0,1] ).

r~

a + H is called a fuzzy residue class, if a + H ztgtj']t (a + H)(t).
-~ 4

THEOREM §  Let (X,+,+) be a ring .And let H & Z{AX) and fl:th_{JtH(t)
’ o,,
E€F(x) and a € X. Then

a+H é{’t,(a +H )(t) —-U‘t@aﬂl-Ht),

Proof. (tgt{‘]t (a + H)(t))(x) = \/ (t/\(a + H)(t)(x))
| Yl Ixeta vy

' teto,q



34

There exists a y ¢H(t) such that x = a + y since x €(a + H)(t).
SO x - a =yeH(t). Thus

V{tlxé(a + H)(t}}

tix - acH(t)
telo] tét-'l{ ! ( }

“Y( t A H(E)(x =~ a))
= (.U tH(t))x - a)

teto ]
= H(x =a );
(Lt e e NO) = W (EA (s 4 Hy (X))
= te\l{c]’ltl X € . a + Ht}

There exists a 'y ¢ H, such that x = a + y since X € a+ Hg o
So x ~a=y €H, . Thus

té[\lﬁj{tlx €a+ Hy} _te\t{u{tlx - a & H}

= V(tAH, (x - a))

té0,1]

i

(Ut He )(x - a)

t€lo,1]

H(x - a). //

i

COROLLARY 1 Let (X,+,-) be a ring .And let H €F(X) and aeX.

Then a + H's membership function (a + HY(x) = H(x - a). //

PROPOSITION 1 Let (X,+,-) be a ting. And let MeI(x) and &, be

X. Then

+M=b+M iff N(b - a)=1(0),

~ ~~

where 0 is the zero element of X.
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Proof. let us assume a + M=b+ M, for any x¢X, we have

(a + M)(x) = (b+ M(x). N(x = a) =

Let x = b, then M(b -a) = M (0).

=

(x -~ b) by corollary 1 .

€onversely, let us assume M(b - a) M(0), for any x & X, we

il

have M(x - a) ﬁ(x-—b+b-a);ﬂ(x-b)/\fl(b—a)

~

M (x - b) A M(0)

= M(x - b);

2

It can be seen in a similar way that M(x - b) = M(x - &). Thus

M(x - a) = M(x - b). Therefore a + M=Db+ M [/

DEFINITION 3 Let (X,+,-) be a ring . And let M ¢ R(X),

The set Xy = {x1x €X, H(x) = H(O)} is called a base set

of H .

PROPOSITION 2 Let (X,+,-) be a ring. And let M € I(X) and xpy

i$ a base set of M. Then a + N=vb+ 1 iff, for a,b € X,

i

a+ XM =Db+ Xy ,

Proof, Tt is clear that Xy = Mp(0) . XM € 1(x) by Theorem 1,
2) . Let us assume g + M=b+ M M(b - a) = M(0) by Proposition

1. Thus a -b e XM. Therefore a + Xy = b + Xpo

Conversely, let us assume a + Xy = b + Xq. Then b - a ¢ Xy « SO

~

M(b - a) = M(0). Therefore a+ M=Db+ M //
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COOLLARY 2 Let (X,+,+) be a ring. And let M €T(X). Then

Xy € T(X) and X - X fa+ X, | aex} forms a residue

m:

clas_s ring. : //

DEFTMITION 4 Let (X,+,-) be a ring . And let M e I(X) and
1)
X =M= {a + M | aext . ue define the addition and the pro-

o d

duct two operations in X -1
1) (a+‘j\,)+(b+[’;)=.(a+b)+§i.
2) (a+£’l)(b+fi) = (ab) + M.

The validity of two operations is immediate.

THEOREM B Let (¥,+,.) be a ring . And let M eI(X), Then

A = Xy 2 X - M (that is, X - M is also a ring).

Proof. e construct a msp f; X - Ay —>X - 1, for any a €X,

Mo

~

fla + X,’i) = a +

f is in-jective by Proposition 2, and for a, b € X

14

f((a + "ﬂ)‘ + (b + Xm)) = f((a + b ) + Xﬂ)

Il

(a +b) + M
}

=(a+£})+§b+ﬂ)

~ !

1l

ab+ﬁ

e o . S S
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h

(a+ 1)(b + M)

1

fla + XM)f(b + XM).

Therefore X - Xy = X - M . //

DEFINITION % Let (X ,+,*) be a ring . And let M ¢ T(X).

Then X - M is called a residue class ring .

PROPOSITION J Let (X,+,°) be a ring . And let M e I(X).

Then XNX-’ﬂo

Proof. \le con-struct a mab T{ X =X - M, for any a €X,
T(a) = a + M,
it is clear that T 1is surjective . And for a,b ¢ X,
T(a + b) =(a+Db)+M=(a+ M) + (b + M) = T(a) + T(b);

T(ab) = ab+ M= (a+ M)(b+ M) = T(a)T(b).

Therefore X ~ X - M. /7

3. Homomorphisms of fuzzy ring

DEFINITION 6 tet f be epimorphism of a ring (X,+,:) IHto

a ring (X',+,+). A fuzzy ideal M of X is called a kernel of a

fuzzy homomorphism of f, if XM = Kerf.

~

For example, let f be epimor~phism of a ring (X,+,*) into

aring (X,+,+). A fuzzy subset I of X is defined as follows:
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t, if x €é&FKerf, té€ [0,1] ,
M(x) = {
e

0, if x ¢ Kerf.
I is a Kernel of a fuzzy homwerphism of f since the nonempty
level subsets of M have onlg two X and - kerf . X and

Kerf are both ideals of X and Xm = Kerf .

THEOREM 8 Let f be epimorphism of &ring (X,+,+) into a
ring (X*',+,+-). And let M-be a Kernel of a fuzzy homomorphism
of f, then

X = M=EX' .

Proof . UWe have X = Xm = X -~ M from Definition 6 and Theorem

b, Since ¥ - X = M 2

=M - Kerf 2 X', X -M & X' . -]/
THOEREM 6  Let f be epimor-phism of a ring (X,+,*) into
a ring (X',+,+) . Then
1) H e R(X) implies f(H) & R(xH.
2) M € I(X) implies f(M) € L(X).

3) H'€R(X') implies f (H') &€ R(X).

h) m'e—l(X') implies fq(M') € IKX)..

Proof. 1) Let HeR(X) , then g eR(X), tel0,1] . So F(lit) &

R(X"'), t €(0,1]) . Therefore f(H) :tFT{f F(He) € R(X').
L &fo ~
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2 ) It can be seen in a similar way that Q{e;jx) implies
(1) € I(x*).
3)  Let H'é& R(X'), then Hg €R(x'), t€[0,1] . So

| fd(Hé) € rR(X), t€f0,1] . There=-fore fq(ﬂf)zikif f (HE) ¢

R(X).

8) 1t can be seen in a similar way that M' € ;ﬁX') implies

£'(ny) € I(x). 77
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