FUZZY RINGS IN THE SENSE OF SET-EMBEDDING

ZHANG Yue

Department of Mathematics, Hebei Mining Institute, Handan, Hebei, China

Abstract

The purpose of this paper is to quote the method of the set-embedding expressing the fuzzy set, we open discussion into the fuzzy rings. And we prove some fundamental properties and theorems.

Keywords: Fuzzy Subring, Fuzzy Ideal.

1. Preliminaries

We first recall some basic concepts occurring in the papers (1, denotes 2] for sake of completeness. In this paper X always a nonempty (usual) set. P(X) will denote the power set of the set X. A fuzzy set in X is a map A: $X \rightarrow \{0,1\}$ and F(X) denotes the family of all fuzzy sets in X.

1. Set-Embedding: Let H is a map of (0,1) into P(X), $t \mapsto H(t)$. H is

called a set-embedding of X, if

 $t_1 < t_2$ implies $H(t_1) \supseteq H(t_2)$.

Now let $\mathcal{U}(X)$ be the family of all set- embeddings of X. Let U, \bigcap , C be the operations in $\mathcal{U}(X)$, they are defined as follows:

$$H_1 U H_2$$
: $(H_1 U H_2)(t) = H_1(t) U H_2(t)$

$$H_1 \cap H_2$$
: $(H_1 \cap H_2)(t) = H_1(t) \cap H_2(t)$

$$H^{C}: H^{C}(t) = (H(1 - t))^{C}$$

$$\bigcup_{r \in \Gamma} H_r$$
: $(\bigcup_{r \in \Gamma} H_r)(t) = \bigcup_{r \in \Gamma} H_r(t)$

$$\bigcap_{r \in \Gamma} H_r : \qquad (\bigcap_{r \in \Gamma} H_r)(t) = \bigcap_{r \in \Gamma} H_r(t)$$

- 2. Decomposition Theorem \mathbb{II} . Let $A \in F(X)$, and $H: [0,1] \rightarrow P(X)$, $t \mapsto H(t)$, satisfies $A_t \subseteq H(t) \subseteq A_t$, $t \in [0,1]$, then
- 1) $A = \bigcup_{t \in [t_0,t]} t \ H(t)$ (that is, $A(x) = \bigvee_{t \in [t_0,t]} (t \land H(t)(x))$, H(t)(x) is a characteristic function $\mathcal{X}_{H(t)}(x)$ Of H(t)).
 - 2) $t_i < t_2$ implies $H(t_i) \supseteq H(t_2)$ (that is, $H \in \mathcal{U}(X)$).

3)
$$A_{t} = \bigcap_{\alpha < t} H(\alpha) \quad (t \in (0,1])$$

$$A_{t} = \bigcup_{\alpha > t} H(\alpha) \quad (t \in (0,1))$$

(The proof of the Decomposition Theorem cf [1])

- 3. Extension Principle: Let $f: X \rightarrow Y$, $x \mapsto f(x)$.
 - 1) Extension Principle I: f can induce f: $F(X) \rightarrow F(Y)$, $A \mapsto f(A) = \bigcup_{t \in U, \eta} t \ f(A_t) \in F(Y)$

- $f^{-1}: F(Y) \rightarrow F(X), \ B \mapsto f^{-1}(B) = \bigcup_{t \in [0,1]} t f^{-1}(B_t) \in F(X).$ (where $f(A_t) = \{y \mid \exists x \in A_t, y = f(x)\}, f^{-1}(B_t) = \{x \mid f(x) \in B_t\}$) f(A) is called the image of A and $f^{-1}(B)$ is called the inverse image of B.
- 2) Extension Principle \mathbf{I} : Let $\mathbf{A} \in F(X)$, $\mathbf{f}(\mathbf{A}) = \bigcup_{\mathbf{t} \in [0,1]} \mathrm{tf}(\mathbf{A}_{\mathbf{t}})$, and let $\mathbf{B} \in F(Y)$, $\mathbf{f}'(\mathbf{B}) = \bigcup_{\mathbf{t} \in [0,1]} \mathrm{tf}(\mathbf{B}_{\mathbf{t}})$.
- 3) Extension Principle \mathbb{I} : If $A \in F(X)$, $A_{t} \subseteq H_{A}(t) \subseteq A_{t}$, $t \in [0,1]$, then $f(A) = \bigcup_{t \in [0,1]} t f(H_{A}(t))$.
 - If $B \in F(X)$, $B_t \subseteq H_{\beta}(t) \subseteq B_t$, $t \in [0,1]$, then $f^{-1}(B) = \bigcup_{t \in [0,1]} t f(H_{\beta}(t)).$
- 4) The membership function of $f(\underline{A})$ and $f'(\underline{B})$ is $f(\underline{A}) = \bigvee_{f(x) \in Y} \underline{A}(x)$ and $f'(\underline{B})(x) = \underline{B}(f(x))$, respectively.
- 2. Fuzzy Subrings and Fuzzy Ideals
- Let $(X,+,\cdot)$ is aring. R(X) and I(X) will denote the set of all subrings of X and the set of all ideals of X, respectively. It is clear that $I(X) \subseteq R(X) \subseteq P(X)$. We will follow a convention that $\emptyset \in$ $I(X) \subseteq R(X)$.
 - DEFINITION 1. Let $H \in \mathcal{U}(X)$. H is called a fuzzy subring of X, if $H(t) \in R(X)$ and $H = \bigcup_{t \in \mathcal{U}} t H(t) \in F(X)$, $t \in [0,1]$.
 - $\mathbb{R}(X)$ will denote the set of all fuzzy subrings of X.

Let M $\in \mathcal{U}(X)$. M is called a fuzzy ideal of X, if

 $M(t) \in I(X)$ and $M = \bigcup_{t \in I(X)} t M(t) \in F(X)$, $t \in [0,1] \cdot I(X)$ denotes the set of all fuzzy ideals of X.

The fuzzy subrings and the fuzzy ideals of X can be defined by the subring-embeddings and ideal-embeddings, respectively.

THEOREM 1 Let $(X,+,\cdot)$ be a ring, and let $H, M \in F(X)$, then:

- 1) $H \in \mathbb{R}(X)$ iff, for $t \in [0,1]$, $H_t \in \mathbb{R}(X)$.
- 2) $\underset{\sim}{M} \in \underline{I}(X)$ Iff, for $t \in [0,1]$, $M_{\epsilon} \in I(X)$.

Proof. 1) Let $H \in \mathbb{R}(X)$, then there exists a subring-embedding $H = \{H(t) \mid t \in [0,1]\}$ such that $H(t) \in \mathbb{R}(X)$, $t \in [0,1]$, and $H = \bigcup_{t \in [0,1]} t \mid H(t)$. Therefore

$$H_{\varepsilon} = \bigcap_{\alpha \in \mathcal{X}} H(\alpha) \in R(X), \quad t \in [0,1]$$
 $H_{o} = X \in R(X).$

Conversely, let $H \in F(X)$ satisfying $H_t \in R(X)$, $t \in [0,1]$, then $\{H_t | t \in [0,1]\}$ is a sub-ring-embedding. Therefore $H_t = \bigcup_{t \in [4]} t H_t \in R(X)$.

//

It can be seen in a similar way that 2) holds.

THEOREM 2 Let $(X, +, \cdot)$ be a ring, and H, $M \in F(X)$, then:

- 1) $\underset{\sim}{H} \in \mathbb{R}(X)$ iff, for any $x, y \in X$,
 - i) $H(x y) \ge H(x) \land H(y)$;
 - ii) $H(xy) \ge H(x) \land H(y)$.

- 2) $\underset{\sim}{\mathbb{M}} \in \underline{\mathbf{I}}(\mathbf{X})$ iff, for any \mathbf{X} , $\mathbf{y} \in \underline{\mathbf{Y}}$,
 - i) $M(x y) \ge M(x) \wedge M(y)$;
 - ii) $M(xy) \ge M(x) Y M(y)$.

Proof. 1). i) Let $\mathcal{H} \in \mathbb{R}(X)$, then $H_t \in \mathbb{R}(X)$, $t \in [0,1]$. Let us assume $t = \mathcal{H}(x) \wedge \mathcal{H}(y)$. Then it follows $\mathcal{H}(x) \geqslant t$, $\mathcal{H}(y) \geqslant t$. So $x \in H_t$, $y \in H_t$. Thus $x - y \in H_t$. Therefore $\mathcal{H}(x - y) \geqslant t = \mathcal{H}(x) \wedge \mathcal{H}(y)$.

It can be seen in a similar way that ii) holds.

Conversely, let $\mathcal{H} \in F(X)$ satisfying i) and ii). Let $x, y \in H_{\mathcal{E}}$, the logical states $\mathcal{H}(x) = \mathcal{H}(x) =$

It can be seen in a similar way that 2) holds.

DEFINITION 2 Let $(X,+,\cdot)$ be a ring, and let $a \in X$. And let $H = \{H(t) \mid t \in \{0,1\}\} \in \mathcal{U}(X) \text{ and } H = \bigcup_{t \in [0,1]} t \ H(t) \in F(X)$. Then (a+H)(t) is a residue class of $X((a+H)(t) = \{a+x \mid x \in H(t)\}, t \in [0,1])$. a + H is called a fuzzy residue class, if $a + H = \bigcup_{t \in [0,1]} t \ (a+H)(t)$.

THEOREM **3** Let $(X,+,\cdot)$ be a ring .And let $H \in \mathcal{U}(X)$ and $H = \bigcup_{t \in \mathcal{V}(X)} tH(t)$ $\in F(X)$ and $A \in X$. Then

$$a + H = \bigcup_{t \in [a,t]} t_t (a + H)(t) = \bigcup_{t \in [a,t]} t(a + H_t).$$

Proof.
$$(\bigcup_{t \in [t,t]} t (a + H)(t))(x) = \bigvee_{t \in [t,t]} (t \bigwedge (a + H)(t)(x))$$

$$= \bigvee_{t \in [t,t]} \{t \mid x \in (a + H)(t)\} .$$

There exists a $y \in H(t)$ such that x = a + y since $x \in (a + H)(t)$.

SO \times - a = y \in H(t). Thus

$$\bigvee_{t \in [0,1]} \left\{ t \mid x \in (a + H)(t) \right\} = \bigvee_{t \in [0,1]} \left\{ t \mid x - a \in H(t) \right\}$$

$$= \bigvee_{t \in [0,1]} \left(t \wedge H(t)(x - a) \right)$$

$$= \left(\bigcup_{t \in [0,1]} t H(t) \right)(x - a)$$

$$= H(x - a);$$

$$\left(\bigcup_{t \in [0,1]} t (a + H_t) \right)(x) = \bigvee_{t \in [0,1]} \left(t \wedge (a + H_t)(x) \right)$$

$$= \bigvee_{t \in [0,1]} \left\{ t \mid x \in a + H_t \right\}.$$

There exists a $y \in H_t$ such that x = a + y since $x \in a + H_t$.

So \times - a = y $\in H_t$. Thus

$$\begin{aligned} \bigvee_{\mathbf{t} \in [\mathfrak{o}, \mathfrak{i}]} \left\{ \mathbf{t} \mid \mathbf{x} \in \mathbf{a} + \mathbf{H}_{\mathbf{t}} \right\} &= \bigvee_{\mathbf{t} \in [\mathfrak{o}, \mathfrak{i}]} \left\{ \mathbf{t} \mid \mathbf{x} - \mathbf{a} \in \mathbf{H}_{\mathbf{t}} \right\} \\ &= \bigvee_{\mathbf{t} \in [\mathfrak{o}, \mathfrak{i}]} \left(\mathbf{t} \wedge \mathbf{H}_{\mathbf{t}} \left(\mathbf{x} - \mathbf{a} \right) \right) \\ &= \left(\bigcup_{\mathbf{t} \in [\mathfrak{o}, \mathfrak{i}]} \mathbf{t} \, \mathbf{H}_{\mathbf{t}} \right) (\mathbf{x} - \mathbf{a}) \\ &= \underbrace{\mathbb{H}} (\mathbf{x} - \mathbf{a}). \end{aligned}$$

COROLLARY 1 Let $(X,+,\cdot)$ be a ring .And let $\underbrace{H} \in F(X)$ and $a \in X$. Then a + H's membership function $(a + \underbrace{H})(x) = \underbrace{H}(x - a)$.

PROPOSITION 1 Let $(X,+,\cdot)$ be a ting. And let $M \in \mathbb{Z}(X)$ and a , h \in X. Then

$$a + M = b + M$$
 iff $M(b - a) = M(0)$,

where 0 is the zero element of X.

Proof. Let us assume a + M = b + M, for any $x \in X$, we have $(a + M)(x) = (b + M)(x) \cdot M(x - a) = M(x - b) \text{ by corollary 1.}$ Let x = b, then M(b - a) = M(0).

Conversely, let us assume M(b-a) = M(0), for any $x \in X$, we have $M(x-a) = M(x-b+b-a) \ge M(x-b) \land M(b-a)$ $= M(x-b) \land M(0)$ = M(x-b).

It can be seen in a similar way that $M(x - b) \ge M(x - b)$. Thus M(x - a) = M(x - b). Therefore M(x - b) = M(x - b).

DEFINITION 3 Let $(X,+,\cdot)$ be a ring . And let $\mathcal{H} \in \mathbb{R}(X)$.

The set $X_H = \{x \mid x \in X, H(x) = H(0)\}$ is called a base set of H.

PROPOSITION 2 Let $(X,+,\cdot)$ be a ring. And let $M \in I(X)$ and X_M is a base set of M. Then a + M = b + M iff, for a, b $\in X$, $a + X_M = b + X_M$.

Proof. It is clear that $X_{M} = M_{M}(0)$. $X_{M} \in I(X)$ by Theorem 1, 2). Let us assume a + M = b + M. M(b - a) = M(0) by Proposition 1. Thus $a - b \in X_{M}$. Therefore $a + X_{M} = b + X_{M}$.

Conversely, let us assume $a + X_{\underbrace{M}} = b + X_{\underbrace{M}}$. Then $b - a \in X_{\underbrace{M}}$. So $\underbrace{M}(b - a) = \underbrace{M}(0)$. Therefore $a + \underbrace{M} = b + \underbrace{M}$.

COROLLARY 2 Let $(X,+,\cdot)$ be a ring. And let $M \in I(X)$. Then $X_M \in I(X)$ and $X - X_M = \{a + X_M \mid a \in X\}$ forms a residue class ring.

DEFINITION 4 Let $(X,+,\cdot)$ be a ring . And let $M \in I(X)$ and $X - M = \{a + M \mid a \in X\}$. We define the addition and the product two operations in X - M:

1)
$$(a + M) + (b + M) = (a + b) + M$$
.

2)
$$(a + M)(b + M) = (ab) + M.$$

The validity of two operations is immediate.

THEOREM 4 Let $(X,+,\cdot)$ be a ring . And let $M \in I(X)$, Then $X - X_M \cong X - M$ (that is, X - M is also a ring).

Proof. We construct a map $f: X - X_{M} \rightarrow X - M$, for any $a \in X$, $f(a + X_{M}) = a + M$.

f is in-jective by Proposition 2, and for a, b $\in X$,

$$f((a + X_{M})) + (b + X_{M})) = f((a + b) + X_{M})$$

$$= (a + b) + M$$

$$= (a + M) + (b + M)$$

$$= f(a + X_{M}) + f(b + X_{M});$$

$$f((a + X_{M})(b + X_{M})) = f(ab + X_{M})$$

$$= ab + M$$

$$= (a + \underbrace{M})(b + \underbrace{M})$$

$$= f(a + X_{\underbrace{M}})f(b + X_{\underbrace{M}}).$$

Therefore $X - X_{M} = X - M$.

//

DEFINITION **5** Let $(X,+,\cdot)$ be a ring . And let $M \in \underline{\mathbb{I}}(X)$. Then X - M is called a residue class ring .

PROPOSITION # Let $(X,+,\cdot)$ be a ring . And let $M \in I(X)$. Then $X \sim X - M$.

Proof. We con-struct a map T: $X \rightarrow X - M$, for any a $\in X$, T(a) = a + M,

it is clear that T is surjective . And for a,b $\in X$, T(a+b) = (a+b) + M = (a+M) + (b+M) = T(a) + T(b); T(ab) = ab + M = (a+M)(b+M) = T(a)T(b). Therefore $X \sim X - M$.

Homomorphisms of fuzzy ring

DEFINITION 6 Let f be epimorphism of a ring $(X,+,\cdot)$ into a ring $(X',+,\cdot)$. A fuzzy ideal M of X is called a kernel of a fuzzy homomorphism of f, if XM = Kerf.

For example, let f be epimor-phism of a ring $(X,+,\cdot)$ into a ring $(X,+,\cdot)$. A fuzzy subset N of X is defined as follows:

$$M(x) = \begin{cases} t, & \text{if } x \in \text{Kerf, } t \in [0,1], \\ 0, & \text{if } x \notin \text{Kerf.} \end{cases}$$

THEOREM **%** Let f be epimorphism of aring $(X,+,\cdot)$ into a ring $(X^{\bullet},+,\cdot)$. And let M be a Kernel of a fuzzy homomorphism of f, then

$$X - M \cong X$$
.

Proof. We have $X - X_{\underbrace{M}} = X - \underbrace{M}$ from Definition 6 and Theorem 4. Since $X - X_{\underbrace{M}} = \underbrace{M} - \text{Kerf} \cong X^{\bullet}$, $X - \underbrace{M} \cong X^{\bullet}$.

THOEREM 6 Let f be epimor-phism of a ring $(X,+,\cdot)$ into a ring $(X^{\dagger},+,\cdot)$. Then

- 1) $H \in R(X)$ implies $f(H) \in R(X)$.
- 2) $\underset{\sim}{M} \in \underline{I}(X)$ implies $f(\underbrace{M}) \in \underline{I}(X')$.
- 3) $H^{\bullet} \in \mathbb{R}(X^{\bullet})$ implies $f^{\bullet}(H^{\bullet}) \in \mathbb{R}(X)$.
- 4) $M' \in I(X')$ implies $f'(M') \in I(X)$.

Proof. 1) Let $H \in \mathbb{R}(X)$, then $H_t \in \mathbb{R}(X)$, $t \in [0,1]$. So $f(H_t) \in \mathbb{R}(X^*)$, $t \in [0,1]$. Therefore $f(H_t) = \bigcup_{t \in [0,1]} t f(H_t) \in \mathbb{R}(X^*)$.

- 2) It can be seen in a similar way that $M \in I(X)$ implies $f(M) \in I(X^{\bullet})$.
- 3) Let $H' \in R(X')$, then $H' \in R(X')$, $t \in [0,1]$. So $f'(H'_t) \in R(X)$, $t \in [0,1]$. There-fore $f'(H'_t) = \bigcup_{t \in I} t f(H'_t) \in R(X)$.
- It can be seen in a similar way that $M' \in I(X')$ implies $f'(M') \in I(X)$.

References

- [1] Luo Chenzhong, Fuzzy Sets and Set-Embedding, Fuzzy Mathematics 4(1983) 113--126 in Chinese
- [2] Luo Chenzhong, The Extension Principle and Fuzzy Mumbers, Fuzzy Mathematics 3(1984) 109--116
- [3] Wangjin Liu, Fuzzy Invariant Subgroup and Fuzzy Ideal, Fuzzy Sets and Systems, 8(1982) 133--139
- [4] Wangjin Liu, Operations on Fuzzy Ideals, Fuzzy Sets and Systems 11(1983) 31-441
- [5] Thang Yue and Peng Xiantu, The Maximum Fuzzy Ideal and Prime Fuzzy Ideal On Ring, Fuzzy Mathematics 1(1984) 115--116