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'he upgrade of all kinds of the structures, such
ss algebraic structure, ordered structure, topolo-
~ical structure, measurable structure, etc, has
peen highlishted, with researches in the theoreti-
cal basis of iuzzy mathematics. In the paper, we

concider the up; rade probl-m for group.
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1. S il odal, PruPoriles OF Y PG OuP
C ~G . ey s s :
Y Se 2 .roup. ln 27 -@P we define a multiplicative opertion.
o
for HVoA and BG’ZJ—w,
s32fap | aen, beB} (1.1)
i 1. easy to know the following properties:
(1) 2V-g ic a semigroup with the identity element {e} (where

= i che identity zlement in G).

(i) A{BUC)=a8UAC, (BUC)A=BAUCH
A( NC)=A5MAC, (BAC)A=BANCA |

i 1f G is an Abelian group, then for any A and Be2G—¢

Lo jmm T
Aolomm IR,

Dkl dTION 1, }xﬁ:QCZZG—¢. Qis called a hypergroup on G,
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i Q is a groun with respect to the multiplicative operation

in G. The identity element of Q is denoted by E.
BxanPLe 1:  In the integer additive group (Z,+), we tuke E={0,

.

} and H:{Zim I meZ}. 1t is clear thnat 1:‘2=E and ¥ is a sub-
croun of Z. FPut §={ heE| h¢ii}, it is easy to know that (§,+) is

hyoorgroup on Z. Now we consider the elements of g . First it
is ¢ aur that & is the identity element of Q and (=h)+E is the
inyorse olement of h+l., We write

s =(=in)+E , A, =in+k N=1,2,% 0eees

<.

gz{A—,’/fn B A2n ? n=’l,2,5,.....}

;.x_gnz{—;in,-—ZrH’l,....,-’I,O,’I,Z,ﬁ,......}

A, = {21’1,2n+1,2n+2,..... }
‘n

eiine an ordering "=" in g: AsB iff ACB, then ({,s) is
simply ordered set:

c«»-o“:)(n+/‘><H2n< ooooo<E<700001<A_2n<A_2(n+/l)<ooo.n

ber oy oA,e,C€(, if ASB, then it is easy to know that ACsiC
and oA <CB, Hence (g,s is a simply ordered group. NOw we tazke
Sre manpings
f: H—= @
h +— h+ Lk

1+ 1. oasy To pnrove that f is a isotone isomorphism from (H, <)

Pl a 10N 10T Let Q be a hnypergroup znd< =<, the g is a

sertinlly ordered group.

SISO For any A,O,CGQ, if A€B, then aCUBC=(AUB)C=BC, thus

L=<, 1n like manner we have CA=<CB, 'his means that Q is a
Hert o ly ordered group., Welhs e

FULITION 1.2 E is a semigroup with respect to the multip-

5
SRS IO we only need tTo note E"=E. W.BE. U,

PooresiTICN 1.3 if Q is a hypergroup, then
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(¥i¢ @)(cardi=cardE) (1.2)
Froor. In one respect we have
Ab=4A implies (Va€A)(aE <A) implies cardE=card(akE) scardA

i tne other respect we have

-1
a7 a=E implies (V¥beA™ )(bACIE) implies cardA=card(bA) <cardk
Hence card=cardE, Q. 2.0,

FAOPCLLUION q s, I @ is a hypergroup, then
(¥4, BeQ)(ANBAP implies card(ANB)=cardE) (1.3)

PO, In one respect we have (ceANB implies cE <€A and cEcB
irnlics ch<ANB implies cardE=card(cE)<card(ANB) ).

ir. “ne other resvect it is caear that card(ANB)< cardk.

Hence card( ANB)=cardi, We ity Do

PrisUer 1,1 Let Q be a hypergroup. 1f £ is a subgroup oi G,

Gaud a | 4e QY (1.4)
i alfo @ subgroup of G, and
9 =¢" /g (1.5)
PooCi. (1) For any A€Q@Qand any aeA, we have Ea CA by [Ba=A.

11 coan be proved that Ea=a, 1f it is false, then 3 b€A such tunat
D&La, we can orove ab_1§E. 1f this is also false, then Jcek
sychy that ab  =c, thus b:c-qaeﬁa, this is in contradication to
b&ia, hence ab-qéﬁ. Now we take deA-q, clearly (ad)(bd)'qu, by
t iz we have ab 1eu, this is in contradication to ab_1§E. Hence
we nove Ra=a. In like manner we can prove ab=A, thus awn=Ea.

From o tnlis we nave

(VaeGﬂ)(aEzEa) (1.6)
9- -{a | aec” } (1.7)
SN Urove that O is a subgrouo of G.

i oone respect, for any a, beG , 5A<Bégsmwh_that a¢A and peB.
Since Q is = FOUD, ECAEquch that AB= L Thus 3 ceC such that
ab=c, rnence abeCel . This means that G is closed with respect

to o toe multiolicatiwve oDeratlon in G,

v oonner respect, for any aeG , 3A¢Q such that aea, From AA—qu

nd eel 3Ibéa and b'(—A—1 such that bb'=e. Thus b_1 b'&A 1.@1nce
1

A=bE 3Jceéb such that a=bc, Hence a =c’1b—1€Eb =A" CG This means
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i CE o -1 . X
tvy .t o is closed with respect to a tfor any aeG .
-(—‘k . ~ o5
“ram e two respects we know that G is a subgroup of G,
- FO . Pl . . - N ‘*
i) from (i) and (ii) E is just a normal subgroup of G,

hence Q =0 /. Qoliele

ot

LCROLLarY 1 1{ © which is the identity element 1s a subgroun
1 2 LAl el \*
of 5, Then gls a quotoent group iff G=G .,
LORCLLany 2 et Q be a hyvergroup. 1f the elements in E are
471 inite order, then Q:u/n
o “ ~ 1 . . ‘_)(. ey
cuxtilaYy 3 If G is a periodic group, thenQ:(; /E.

Sl d sty 4 1f i which is the identity element is a finite set,

Len gz‘\lﬁ /&

. - PR ce ;

P by means of E =E, (n=1,2,...), it is easy to prove that
aey O3 . w* oy - 1 v

e =iements in I are all finite order, hence Q:(.z /E. Goie e

N N P - - -~ . ] . \* o]
Culb o bar?d b 11 G is a finite group, theQ:(J /E.

Tl 1,7 Let 9 be a hypergroup ona group G and G' be a

woopgn. 11 fio —=G' is a homomorphism, then

g 2{z(s)| AeQ} (1.8)
i+ . ayper,roup on G', and Q*‘v Q'-

e seoof is simole, it is omitked.
fseitan 1o et Q be a hypergroup on a group G oand G be a

ccoup., 1f fiG —=G ds & nomomoronism, then
-1 y
Qe (ar) | new (1.9)
i syper: roun on G, xnd gw ql.
Tae croc is cdimole, 1T is omit ted.
i . A} 1 - } o b . G - ‘:2 ™ > 3T
dne e G b Let Q be a hyper; roup, B3€2 -¢ and B =B, 1f aB=3BA
car wry A€Q, then
9 2{ns | XN (1.10)
{0 ¢ hyvergroup on G, and QMQB .

O 1+ i: easy to prove that the mapping
A F* Ab
surjective homomornhilsm, hence gj is also a hyper:;roun on

. o ibe Lo
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Let g be a nypergroup. 1f I is a normal subgroup of
on G, andQ~@..

RO LartY
Taen { x"‘AGQ}<1Q also a hypergroup
. Halllenb UOTTENT GrOUP
UL ITION 20 Let . 11 eel, then £ is a subgroup of U
N 1’“ =i,
The ool is soimple, it is omitted.
Cosllads 200 let Be2”-@, E“=E and H be a subgroup oi G. 1f (¥x
¢ Yzib=ux), tnen
Qo= | xeit ) (2.1)
ypergroun on U, and H~AQ
U It 12 easy to orove that the mapping
f:H — §
X r—= XE
Go Woibe e

20

vom T Ne

iriective homomorphism, hernce Q is a hypergroup on
fis call-

subsemigroup of G and eek

SN 2.1 let E be a
- ormal subsemigroup of G, if (¥xeG)(xE=Ex).
be a normel subsemigroup of G, Write
(2.2)

FIU R N Let L
Gle={xE | xeG}

theorem 2.1 we know that Gl is a hypergroup on G. G|E

ted @ peneralized guotient group on G.

7:  In the example 1 i1 we take H=<, then g is a genera-

il kL sl e

L suotient group on 4.
'y let €2 '-p. That eeE is not a necessary condition whic.
r) 1 . . .
40 ES=r, For examnle, if E is the set of all positive ra-
. 2 .
e} numbers in the rational number group (W,+), then E“=E but
D&
O P10 2.7 If E is a normal subsemigrouv, then
A - -1_ . P
K2{xeh X &K ( a _/)
i yormal subpgroup of G.
i i= called Kernel oif E.
N et G?E be a generalized quotient group and K be
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‘te vernel ol B, then the mapping
£:G —~ G|E
K —= XK
“urjective hnomomorphism and kerf=k, thus G/K E‘GIE. Especi-
Cly, o |E=U/% when K=&, ond G ¥ G{k when K={e¥ .

L, Clearly f is a surjective homomorphism. Now we prove
T o L i - . . -1 .
cot orf=k, For any xel clearly xECE, If béi then x bek, thus

a:x(x"ﬁb)exm, thus xBE=E, hence xekerf, i.e. K<kerf. 1f xekerf,
“rer L=xeel by xi=8H, For eel, Jbek such that xb=e, thus b=X—1€E,
Gorno xéf, i.e, kerf <K, These mean that kerf=K, hence G/XK ¥ GIE.
We e L.
,ﬁ@ be o generalized quotient group. For any x¢G the mapping
B Glg — GIB
A T (2.4)

i oo osutomorphism on U[E. 1t is called a induced automorphism

ols o, and “he set of all induced automorphism on G|E is denot-
& vy 1(G|E). Clearly 1(G|E) is a group with respect to the op-

vt ian for composite mapping. 11 is called induced automorphism

he = normal subgroup of G. x€G is called a commutative ei-
“opcion element, 11
(VaaG)(gmeK)(xax_l=am) (2.9)
e ot of =11 commutative extension elements of K is denoted by
, tnat iz called commutative extensioner,

easy to know that K<L{K).

R S Let G|E be a generalized quotient group. If K is
“ne sernel of &, then

1(G|E) ¥ G/LLK) (2.6)
oecimily, it L{X)=G then I(GIE) only contains the idencity
tororphism and if LK )=K then
(G|E) = G/K & G/u (2.7)
ok Firstly it is easy to know that the mapping
f¢ G—> 1(G|E)

X ¢X

surjective nemomorphism. Secondly, for any A=akeG|LE we
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i T 2h iTE (ameK)(xax—1=am)

wAX ok AT xeL(K), thus kerf=L(K), hence L(k)

Pris roans that

i & cormal subgrouo of G and G/L{k) T I(G E). Welt. U
Voo 2.4 Let g be a hypergroup. 1f e€l then Q is a genera-

] - . *

lige. cuotient group on G, i.e. Q)_u |&.

ProCE. (i) Clear E is a subsemigroup with the identity ele-
me - irom tne prooosition <.7.

VRN ; ‘_1 E "1 F ~

{24 Vné@],aaeA,abeA by AA =E and e¢E, such that ab=e.lt Can be

oved tnat A=al, Firstly that allc A is clear., Secondly, VceéA,

-1, . - . s
A=ly, thus ceal, hence A<al. Thig

c=cc={bic=a{ bc) and bcea
frnat A=so. In like manner we can prove that ad=ca, thus

=uil o

ab=pe, nd we have

g ={as | aec” } (2.8)

{20 L can be proved that G is a subgroup of G like the
GUO0 o “he theorem 1.1, llence g=G IE. Wleile s

FF Let G be & cyclic group and g be a hypergroup on
teorly e€l, Tnus Q must be a generalized cuotient group on

nce ¢ is oa subgroup ol G, ¢ is also a cyclic group.

s in a ifinite order cyclic group,(] is a goutinet group
R iﬁ¢u‘g is also a finite order cyclic group.

= infinite cyclic group, we have the following two

g1 =14 10 &

[

zH\ “, N . g * oy . ] .
o) Y . in a subgroup of U,’ﬂ%}Q:b /E, thus 9 is a finite

corler Coyeilc group.
[ is a subsemigroup of G, then K={e} , where L is the

cerre . ol om, and q E'g“, thus (J is a infinite order cyclic group.
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