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Abstract : This paper proposes a new approach, based on possibility theory, for
dealing with uncertain facts and default rules. The chaining of certain or uncer-
tain facts and rules is discussed in detail. The modus ponens, the modus tollens
and the resolution principle in the propositional case, are generalized and pat-
terns of plausible reasoning are recovered. Only min and max operations are used
for computing the possibility degrees corresponding to the different alternatives.
The end of the paper is devoted to the problem of the combination of results ob-
tained from different sources. Particularly it is shown that the combination may
be completely unsuitable when some uncertain conclusions can be obtained directly
through a specific rule and indirectly through a chain of inferences. This ob-
servation has important consequences when building inference systems for the ex-

ploitation of uncertain knowledge bases.
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T = Introduction

Rich [9] has suggested to see default reasoning as a likelihood
calculus where confidence in a rule is expressed by means of a MYCIN-like cer-
tainty factor [11]. More recently Ginsberg L[3] has proposed an approach to non-
monotonic reasoning in the same spirit, applying available statistical methods
(especially Dempster's rule of combination [10]) to ranges of possible values of

probabilities representing what is known about these confidences.

In this paper, we propose an approach to inexact and default reasoning
based on possibility theory [12]. Possibility theory seems to be well-suited for
representing uncertain knowledge ; moreover because we are mainly using max and
min operations, the numbers used for the estimation of uncertainty are regarded

only as rough tendency indications ; what is meaningful in practice is the
ordering among these numbers, not their exact value. This s in agreement with
the fact that precise estimates of the amounts of uncertainty are almost impos-
sible to obtain in practice. The proposed approach is quite simple and not sen-—
sitive to slight variations of the estimates. Its basic features have been re-
cently given in [2], [63. In the following the approach is presented in greater
detail. Moreover some control issues which are peculiar to the management of un-
certain knowledge are discussed. Particularly, in case of conflicting results re-
lative to a same matter, obtained from different chains of inferences, we may
have to be more confident in some of these results than in the others, rather

than combining together positive and negative conclusions in a blind manner.

We first deal with knowledge representation issues, then with the

chaining of rules before discussing combination problems.

2.7 - Facts

Let p be a proposition ; provided that p is non-fuzzy (i.e. p does
not contain any vague predicate), the excluded-middle and the non-contradiction
laws hold, thus p and ap (the negation of P) can be regarded as mutually exclusive
alternatives. Then a so-called possibility distribution [12] 7 can be attached
to the set {p, =p} ; namely, two numbers, belonging to the real interval £0,11,

m(p) and TCp) are assessed, which supposedly grade the possibility that p is



true and the possibility that =1p is true (i.e. p is false) respectively. The
normalization condition

max{(m(p), mGxp)) =1 1
must hold ; the constraint (1) departs from probability theory where we should have
prob(p) + probCip) = 1 (see [12] or [5] for a presentation of the differences
between possibility and probability) ; (1) expresses that at least one of the
alternatives must be completely possible, since the alternatives are mutually
exclusive and cover all the possibilities. If m(p) = 1 and mGp) = 0, p is re-
garded as certainly true since it is impossible that p is false ; similarly
m(p) = 0 and nCip) = 1 corresponds to p false. When m(p) = w(p) = 1, we don't
know if p is true or false, both hypotheses being equally possible. If m(p) = 1
and m(ap) = A, with 0 < X < 1 we are not sure that p is true, but it is more
possible that p is true than p is false ; the smaller A, the greater our certain-
ty (or if we prefer the stronger our belief) that p is true ; total certainty

would correspond to A = 0.

The quantity

n(p) =1 - 1ap) (2
can be viewed as a measure of necessity since definition (2) expresses that the neces-
sity of p corresponds to the impossibility of ap, which is in agreement with our
intuition. As recalled in [5], possibility and necessity measures are respecti-

vely particular cases of plausibility and belief functions studied by Shafer [101.

Moreover, rather than precisely knowing the values of m{(p) and of T(pk
we can only know that they are restricted to some subinterval of [0,1]1 ; for ins-
tance m{p) € [0,\] means that p is true is regarded as possible at most at the
degree A ; 1in case of total ignorance, we only have w(p) € [0,1] ; however in
any case, the constraint (1) must hold. Thus in the proposed approach a diffe-
rence is made between total ignorance where m(p) and m(ip) remain completely
unknown (this situation will be denoted in the following by m(p) = 72 = 7(p)),
and the indetermination of the truth or the falsity of p due to the fact that
n(p) = 1 = mAp), where it is known that p and 7p are equally possible. Thus,
to each proposition p is attached two numerical or interval-valued quantities
(which are independent up to the constraint (1)) rather than only one as in a
probabilistic approach. In this framework hard facts as well as uncertain facts

can be modeled.
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2.2 - Rules

A rule 'if p, then g' will be represented by means of a conditional
possibility distribution defined by the gquantities m(glp) and m(Iglp) which res-
pectively estimate the possibility of having g true when p is true and the pos-
sibility of having g false when p is true. We must have

max(m(q|p), mCigip)) =1 (3
When the rule is certain, we have m(glp) = 1 and 1(7glp) = 0 ; when the rule is
uncertain, i.e. the rule is such that "generally if p, then q" or "if p, proba-
bly g', we have m(glp) > 0. The smaller mC1q|p), the more certain the rule "if
p, then g". A rule of the form "if p, then7qg" will be represented by T(glp) =1
and m(g|p) > 0 which assesses the degree of possibility that the rule fails. Note
that m(g|7p) and T(igl1p) remain completely unknown since, viewing the rule as
the incomplete specification of a mapping, the rule only states that the image
by this mapping of an argument which satisfies p should rather satisfy g than™g
(if mCalp) = 1 and mCglp) < 1) and gives no information at all on the images of

the arguments which satisfy Tp.

2.3 - Relation_with MYCIN

As pointed out in [5], the knowledge representation technique, based
on possibility distributions, we use here, is similar to the MYCIN one [11]
based on measures of belief (MB) and on measures of disbelief (MD), graded on
L0,1]. More precisely, if we state the following correspondence

T(qlp) =1 - MD (qg,p) (4)

TCglp) =1 - MB (q,p) (5
(4) and (5) are in agreement with the relation MBQC1qg,p) = MD(g,p) which always
holds in MYCIN ; then the normalization constraint (3) is satisfied in MYCIN
under the form MB(g,p> > 0 = MD(g,p) = 0. Moreover, the formulae which are pro=-
posed in the following for the treatment of compound conditions are analogous, in
the sense of (4)-(5), to MYCIN ones. However, the chaining and the combining
operations we use, are different from the MYCIN ones, and are consistent with the

possibility theory=-based approach we have chosen.

The characteristic axiom1 of a possibility measure [12]

(1) The other axioms are m(I=1 and 7(D)=0 where X and 0 respectively represent
the ever—true and the ever—-false proposition.



89

Y p, ¥qg, mpvg) = max{(m(p), m(g)
together with the relation [1]

T(pAg) = min(m(glp), m(p))
enables us to obtain from g = (grp) v (gaTp)
() = maxCmin(mglp), T(p)), min(m(qlip), T(p))]
T(1g) = maxCmin(n(aglp), w(p)), min(m(agl1p), TE@PI)]
(8) and (9) can be written in a matrix form

[ﬂ(q) } _ {ﬂ(q!p) m(qlap) ] [ﬁ(p) ]

) 1qlp) maglhp) | lnep)

(6)

(7

(8
(9

1o

where the matrix product is defined by analogy with the usual one, changing the

sum into max operation and the product into min operation. The result of ad

is normalized as soon as (1) holds and m(ql.) and TCgl.) satisfy (3). The ana-

Logous of (8) in probability theory is

prob(g) = prob(qg|p)-prob(p) + prob(gfip): prob@cip).

(10) enables us to chain the conditional rule "if p, then g" with the fact"p";

rule and fact may be certain or uncertain.

When the possibility degrees are only known to be restricted to sub-

intervals, max and min operations are extended in the following way

max(Ca,bl, [c,dl) = Cmax(a,c), max(b,d)]
min(La,bl, [c,dl) CminCa,c), min(b,d)]

Note that a precise value is a particular case of subinterval

“an
12)

a = [a,al.

The matricial product (10) extends the modus ponens since it can be

checked that

Mg ] _ [niglp ﬂ(qlvp? ) | _ (1 21 1]
TG | T(1g|p) ﬂﬁﬂﬂp) m(rp) 0 2J10

where '?' stands for any number belonging to [0,1]. Conversely the system of

equation F1'1 I}] 1}
02 |yl T o

has for unigue solution x = 1, vy = 0, which means that if the rule "if p, then q"

is certainly true, only the information that P is true enables us to derive that

g is true with this machinery. Similarly, the equation [15}Ej

Ob

0
1

has for unique

x=0=a and y=1=b, which means that q false can be only obtained from p false,pro-

vided that we have the rule "if-p, thenagq".

DT 17 e I
In case of the fact p is uncertain, i.e. =

|Tp)

"if p, then g" is certain, we get

} and the rule
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which is natural since m(gl1p) and m(7glap) remain unknown and depending on

their values we may have [8 g][l} = [g} or {8 ?}{1} = [1] (in the first case

q is true whatever p is, in the second case p is true if and only if g 7s

true). When the rule "if p, then g" is uncertain and the fact"p"is certain,

ISR

which is agreement with our intuition.

we have

Let us consider a very simple illustrative example. Suppose our know-
ledge base contains two pieces of information pertaining to the usual meeting

behaviour of people

("5 f Bob comes, Mary comes, represented by
‘n1(M|B) T, (M1B) | M 2]

1 =
m, aM(B) T (M8 02

1
(" f Mary comes, then generally Tom comes, represented by

L M 2]
o (TM nZ(ThM)T 12

T, T[M) M, AT [AM)_ A 2

and the instantiated fact

! n
(3) Bob comes at the next meeting, represented by

NS(B) |1 .
ﬂ3(18) 0
. m(T) 1T 2011 2411 1 .
By a cascade of two matrix products we get {%(1T)1 = {X ;][O 7][6} = [*] which

expresses that there is only a possibility equal to A that Tom does not come

at the next meeting.

Since the rule "if p, then q" is equivalent to the rule "if—1q,
then -1p" when the rules are certain, we may postuLateZthat this equivalence still
holds with uncertain rules provided that m(glp) = 1 (i.e. when it is the rule
"if p, then g" that is somewhat certain rather than the rule "if p, thenq",
which itself would be eguivalent to "if g, then=p'). Then the contraposition
applied to w(.}.) yields when m(g{p) =1

T(q|p) = TCp|TQ) m(al1p) = wCQpld

n(iglp) = wlp [7g) w(iglip) = wlpla) (3

(2) This may be done only in the absence of contrary evidence, since strictly
speaking it may happen that the rule "if p, then g" generally holds, while the
rule "if g, then 7p" does not hold generally (this situation is feasible if
g is rarely false).
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m(aglp) m(g|Tp) 1 _ 12 . [mpla) wplmad 1_ [2 0
From [ﬂ(7Q|D) meglae) | T |0 2] WE obtain | e olg) n@plagd)|” |2 1 whose

. . m{(qg) _ 10 . m(p’ 0 .
matrix product with [ﬂcgq)w = [}] yields {ﬂfﬁp)} = [{], which corresponds to

the modus tollens. The equivalence "if p, then g' and "if q, then p'" (viewed

as ""if 1p, then 1g") will be represented by [ﬁ(qlp) m(al7e) W = {8 ?1 =

, T(=qlp) TGglp) |
(ﬂ(plq) T(p T
n(apla) nCpla)d

5 [w(qlp) n(ql7p) 1 1A
Y Inaglp) nGglaed | T {0 :

1. A rule "if p, then g almost reversible will be represented

Our framework enables us to capture some of the patterns of plausible
reasoning considered by Pdlya [4]1. From the certain rule "if p, then g" and 'q

true' nothing can be said concerning p. Indeed, using (10) and (13) we get
7
{225;)} = [é ?}{EJ = [Eg:;%}. If we have the additional knowledge that 'q without

o is hardly credible, i.e. almost impossible", which can be translated into

m@plg) = € < 1 (which implies using (3) mlplg) = 1), we get

m(qlap)

{Eé:;)l = {l ?}{g\ = [2}, j.e. p is very credible sinceqp is almost impossible

- - -

(m@ap) = €).

3.5 - Compound_conditions

In order to state the rules more precisely we have to be able to
consider rules of the form "if p and g, then r" ; such a rule can be represented

. . [mCrlpAg)  wlr|apvy Q)
by means of the matrix [ﬂ01r|pAq) TCirlTpva Q)

(ﬁ(pAq) 1, computable from {ﬂ(p)-}‘and [ﬂ(q) ] by the formulas

1, which can be chained with

mhpvaqQ) m(ap) T€é1q)
m(pAg) = min(m(p), m(a)) (14>
mTEpvg) = max(mGip), mGO)) s

Formula (14) holds provided that p and q are logically independent, (see [53).
Note that if (m(p), m@p)) and (mw(q), TCIQ)) are normalized, (m(prg),mCpvqgl))
is also normalized. When m(q) and m(zq) are completely unknown, (14) and (15)

respectively give

m(prq) € [0,m(p)] (16>
m(ipv=q) € [nGap), 1] ‘ a7
1t points out the approximation we make when we ignore g in the rule

"if p and q, then r'.



In proposition logic, the inference rule, named "resolution principle"
oroduces a clause of the form Lvl' from two clauses of the form pvl and apvlL',

where p, L, L' stand for any Lliterals.

In our approach these two latter clauses can be respectively represented

by the matrices
ﬁulp) n(thw _ (? 1] T ) Tr(L'.-rp)-\ _ {1 ?}
rElp) nathe ! Tz ol & reu e mGLU e 0

! 1
Applying the formulas (14)-(15), we get [ggitk.l?%lp) Eéﬁtg\li?iﬂp)w

1 1] : : mCLvi") _ [mavir e vt} pd Hn(p)
IVO Oj. Using (10), 1.8. {TT(‘TL/\“lL')] - [TT("L/\"‘L"D) ﬂ-(—,L/\—lLll.,p) T(=p) |~ we

' 1 )
check that we obtain {2§:tk";L')J = [g] with [ﬂ(p) 1 = [ﬁ] as well with

, m(p) 0
{Tr(p)] ) M
mé=pd) T 1)

Lo

N.B. The application of formula (14) requires the Logical independence of L and
L'. However when L = L', (14) trivially holds : m¢7la=l|p) = 7(1llp) =
1 and 7CILA-TL") =

min(r(Tllp), mGallip)). When L' =701 we directly get m(ivie")
since (vl' = 4 and LAL' = 0.

Thus the resolution principle is preserved.

Given two possibility distributions (n'(p), m'E@p)) and (1" (p),
7' (1p)) pertaining to a same proposition p and issued from different sources,
the simplest and perhaps the most natural way for combining them into a new
possibility distribution (m(p), mC(ip)) is the intersection (see [5] for ins-
tance) ; namely

m(p) = min(m'(p), W' (pl)) 18

1¢Ip) = min(n'Gp), 7' CTIP)) 19

In case of a conflict between the sources (which means that for one
source p is more possible thanp and it is the contrary for the other source),
the result obtained from (18)-(19) is no longer normalized in the sense of 1,
which expresses the conflict. We may renormaLizésthe result by dividing it by
max (m(p), T(ip)), if we want to use the result of the combination in a new chain of

inferences in spite of the conflict. However this is impossible in case of a

(3) See (5] for a discussion on the renormalization in case of conflict in the
more general framework of Shafer's approach.

0
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1 ™ ] L 01 L _
(6] and {ﬁ”ﬁvp)1 = [1‘, which 1s na

tural. But then we have comb((l\ , {?}) = [1],for any'positive value €. Thus it

[

. . ' (p) ]
total contradiction, i.e. when {ﬂ'(ﬂp)

makes a difference between assessing the value 0 or the value € to m(p) ; indeed
in the first case we are sure of the falsity of p while in the other we are not. In any
case 1-max(m(p), m(1p)) where m(p) and m(1p) are given by (18)-(19) evaluates

the extent of the conflict. Note that there is no reinforcement since

comb([i},{ll) = [}] ; in case we want to reinforce (but it is risky to do it

systematically), we may use the product instead of min operation in (18) and

(19). We have comb((q{1 ) = . ! ; thus the least uncertain information
Al LM min(i, W

is kept. Particularly, 1 1 1
comb(LJ,{}}) = LJ.

In case of interval values in the combination operation, we may use

2
(11)-(12). Then, due to (1 comb([l],[é}) = comb(comb([ll,{l]), comb({l},[{})) and

- T

?
finally we get comb({1 ,[:}) =[ 1 1. In fact here we have taken into account
A ? £o, Al

the information that anything was possible concerning p according to one of

the sources (it would be different if the second source is ignored or dbes not
exist), it is why we get mw(ip) < A rather than m(ap) = A. The basic point is that
when we assess a precise value to a possibility degree, we tacitly admit that
this value may be decreased in the light of a least uncertain information,

without there is any confict between the pieces of information.

However as we shall see in the next section, there are situations

where not combining is better.

Let us consider the small example of section 3.2 again. Now we add
the following default rule to our knowledge base :
(4) "Usually, if Bob comes, Tom does not come', represented by

T(T|B) m(T|=B) i _ju?

T(IT|{B) w(aT}BY] — |1 7

The situation is pictured on Figure 1,

rufe 2 ! |
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e A (uncer'fa.'n/t J
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o
',)/\

Toom Figure 1
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m(AT)

From fact 3 and rules 1and 2 we got in section 3.2. (H(T) 1 = [11.

Applying rule 4 to fact 3 gives
P(T)W B} [u ? m _ [u
mTC=T) 1 2]10 (1)

Thus from two different derivations we get two conflicting albeit uncertain
conclusions. We might think of combining them. It is not necessarily a good
idea for reasons we give in the fotlowing. Another related question is to
wonder i€ the conflict between the two partial conclusions is due to some

inconsistency in the knowledge base or not.

What happens here is that we have a specific rule which enables us
one hand, while on the other hand, we indirectly derive another conclusion

from an intermediary conclusion obtained through a certain rule.

It is extremely important to notice that the two rutes 1 and 2 can-
not be combined in order to generate a new rule of the form "if Bob comes, then
generally Tom comes'. Indeed if we only know that all the times that Bob comes,
Mary comes also and that most of the times when Mary comes, Tom comes, we have
no idea of the number of times when Bob and Tom comes together as pointed out
by Zadeh [13]. It may happen that in fact Tom comes when Mary comes but Bob does
not, since Bob's coming is not a necessary condition for Mary's coming. Thus
the rule 4 in our example is not inconsistent with the two other rules. Note
that if all the rules were certain, the knowledge base would become inconsistent.
However if we know that Mary comes it is legitimate to conclude from rule 2
that there is only a possibility equal to A that Tom does not come. The fact
that Mary comes can be definitely established from fact 3 and rule 1 in our
correct with respect to our state of knowledge although we have not the rule
"if Bob comes, then generally Tom comes'. When we have the rule 4, which is
more specific, we must prefer the conclusion directly obtained from fact 3 and
rule 4. See Prade [7], Ginsberg [3], Reiter and Criscuolo [8] for related dis-

cussions.

When the rule 1 is an equivalence or is at least almost reversible,
a new (uncertain) rule can be legitimately built by chaining rules 1 and 2.
Indeed it can be easily shown (see Zadeh [131) that if we use a probabilistic
approach we have

Prob(T|8) > max(Q,Prob(T|[M) + Prob(B|M)-1) (20
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This formula can be easily extended to fuzzy-valued probabilities [13]. In
case of the possibilistic approach it can be shown that we must have (see [11)
max (MCITIB), WCIBIM)) > w(7T|M) @2n
which can be translated in terms of necessity using (2)
min(n(T|B),n(B[M)) < n(TIM) (22)
and which expresses that our certainty that Tom comes when Mary comes cannot
be less than both the '"degree of reversibility'" of rule 1 and the certainty
that Tom comes according to rule 4, elsewhere the knowledge base may be consi-

dered as inconsistent.

Note also that in order to be valuable 3 specific rule ought to
lead to less uncertain conclusions than the ones obtainable by indirect deriva-

tions in case of consonance of the conclusions.

The above discussion remains preliminary but points out a central
issue in inexact or default reasoning which must be dealt with by using sophis-
ticated control strategies and/or by being cautious in establishing a knowledge
base. It is thus important to be aware of this problem when building inference

Systems.

The approach to uncertainty in reasoning we propose here remains
quite simple in its principles. The knowledge representation, in terms of pos-
sibility distributions, which is used seems more suitable for representing un-
certainty here than a probability-based method, since we are able to distin-
guish between a total lack of certainty that p is satisfied (TGip) = 1) and
the certainty that p is not satisfied (m(p) = 0), which is not possible in pro-
bility theory where prob(ip) = 1< prob(p) = 0. Max and min are "gualitative"
operations which are in agreement with the possible lack of precision of the
different possibility degrees, what really matters is only that some alternati-
ves are certainly more possible that others. They are only sensitive to the
orderings of possibilities. Operations used in probability theory are more

sensitive to changes (even limited) in probability values.

The basic ideas of this paper are currently experimented in an im-

plement2d system dealing with financial analysis. First results sug-
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gest that the approach works well in practice.

Besides the general problem of knowing when we have to block a
combination operation, discussed in section 4.2., is a topic for further

research.

REFERENCES

L1 - Dubois, D., Prade, H. (1985) The management of uncertainty in fuzzy expert
systems and some applications. In : The _Analysis_of_Fuzzy Information

(J.C. Bezdek, ed.),CRC Press, Boca Raton, Fl., Vol.2, to appear.

[21 - Farreny, H. , Prade, H. (1985) A possibiltity theory-based approach to

(Bratislava) , 4, to appear.

(3] -~ Ginsberg, M.L. (1984) Non—-monotonic reasoning using Dempster's rule.

(4] = Pélya, G. (1954) Mathematics_and Plausible Reasoning. Vol. II : Patterns

[5] - Prade, H. (1985) A computational approach to approximate and plausible
reasoning with applications to expert systems. IEEE Trans. Pattern Ana-

[e]

lysis & Machine Intelligence, 7, n° 3, 260-283.

{61 = Prade, H. (1985) A simple inference technique for dealing with uncertain

(7] ~- Prade, H. (1985) Some ijssues in approximate and plausible reasoning in
the framework of a possibility theory-based approach. In : Matters of

[81 - Reijter, R., Criscuolo, G. (1983) Some representational 1issues in default

[31 - Rich, E. (1983) Default reasoning as likelihood reasoning. Proc. Nat.

101 - Shafer, G. (1976) A Mathematical Theory of Evidence. Princeton Univ.
Press.

{111 - Shortliffe, E.H., Buchanan, B.G. (1975) A model of inexact reasoning in
medicine. Mathematical Biosciences, 23, 351-379.

121 - Zadeh, L.A. (1978) Fuzzy sets as a basis for a theory of possibility.
fuzzy Sets_and Systems, 1, n® 1, 3-28, 1978.

(131 - Zadeh, L.A. (1984) A theory of commonsense knowledge. In : Aspects_of



