ON INTERVALS DEFINED BY FUZZY PREFERENCE RELATION

Krzysztof PIASECKI

Department of Mathematics, Academy of Economy, ul. Marchlewskiego 146/150, 60-967 Poznań, Poland

This paper contains the considerations of the system of fuzzy arrangement (SFA) defined in [2]. Used here the notions of consistence and monotonicity of fuzzy relation FR are defined in [2], too.

1. Fuzzy intervals and their based properties

Let be given any monotonical (FR) $\varrho: \hat{\mathbb{R}}^2 \to [0,1]$ and $\psi: \hat{\mathbb{R}}^2 \to [0,1]$ where the symbol $\hat{\mathbb{R}}$ denotes the set of all real numbers with the minus infinity and the infinity.

Definition 1.1: Each mapping $\psi < a,b > : \widehat{R} \rightarrow [0,1]$ defined by the identity

$$\varphi(a,b)(x) = \psi(a,x) \wedge \chi(x,b) . \tag{1.1}$$
 for every $(a,b,x) \in \mathbb{R}^3$, is called a fuzzy interval (FI).

Let us consider any SFA (\S, \S_e, \S_s) where \S is FR "less or equal" (FLE) and \S_s is FR "less than" (FLT). We note, that the identity (1.1) describes all kinds of intervals on real line $\widehat{\mathbb{R}}$ generalized for fuzzy case, because we have:

- if
$$\psi = g$$
 and $\eta = g$ then $\psi < a,b > = \psi [a,b]$;
- if $\psi = g$ and $\eta = g_s$ then $\psi < a,b > = \psi [a,b[$;

By monotonicity of FR we can to prove that:

Theorem 1.1: We have

a)c and b
$$\langle d \Rightarrow \psi \langle a,b \rangle \langle \psi \langle c,\tilde{a} \rangle$$
; (1.2)

$$\psi(a,b) \wedge \psi(c,d) = \psi(avc,b\wedge d);$$
 (1.3)

$$\psi(a,b) \vee \psi(c,d) \leqslant \psi(a \wedge c,b \vee d);$$
 (1.4)

for any $(a,b,c,d) \in \mathbb{R}^4$.

Furthermore, by monotonicity of SFA, we obtain.

Theorem 1.2: We have

$$\varphi$$
]a,b[$\leqslant \varphi$ [a,b[$\leqslant \varphi$ [a,b] $\leqslant \varphi$ [a,d[$\leqslant \varphi$]c,d[; (1.5)

$$\psi$$
]a,b[$\leqslant \psi$]a,b] $\leqslant \psi$ [a,b] $\leqslant \psi$]c,b] $\leqslant \psi$]c,d[(1.6)

for any $(a,b,c,d) \in \widehat{\mathbb{R}}^4$ such that a > c and b < d.

Let us consider such ordered pairs of FR $(2, \gamma)$ that

$$\psi = \frac{1}{\eta^{-1}}$$

The consistence of SFA implies that the pairs (g, g_s) and (g_s, g) fulfil the condition (1.7). Therefore we mark off the following class of FI.

Definition 1.2: Each FI obtained by means of the pair (2,4) fulfilling (1.7) is called half-open FI (HFI).

For any HFI we obtain the following conclusion.

Theorem 1.3: For any $(a,b,c,d) \in \mathbb{R}^4$, if $b \leqslant c$ or $a \geqslant d$ then the HFI $\phi \leqslant a,b > and <math>\phi \leqslant c,d > are W$ —separated.

Proof: If b < c then

$$\begin{aligned} & \psi(a,b) = \psi(a,\cdot) \wedge \chi(\cdot,b) \leqslant \chi(\cdot,b) = 1 - \psi(b,\cdot) \leqslant \\ & \leqslant 1 - \psi(c,\cdot) \leqslant 1 - \psi(c,\cdot) \wedge \chi(\cdot,d) = 1 - \psi(c,d) \end{aligned}$$

By analogous way as above, we check W-separatity between ψ <a,b> and ψ <a,c> for case a>d . \blacksquare

Theorem 1.4: The HFI φ < a,b > is W-empty set for any pair (a,b) $\in \widehat{\mathbb{R}}^2$ such that a > b .

Proof:
$$\psi(a,b) = \psi(a,\cdot) \wedge \chi(\cdot,b) \leq \chi(\cdot,b) = 1 - \psi(b,\cdot)$$

 $1 - \psi(a,\cdot) \leq 1 - \psi(a,\cdot) \wedge \chi(\cdot,b) = 1 - \psi(a,b) \cdot \blacksquare$

Definition 1.3: If finite or infinite sequence of fuzzy subsets $\{v_n\}$ fulfils the next properties:

- fuzzy subsets v are pairwise W-separated;
- the fuzzy subset $\mu \wedge (1 \sup_{n} \{ \circ_n \})$ is W-empty set;
- $=\sup_{n} \{v_n\} \leqslant \mu$

for fixed fuzzy subset μ then it is called a repartition of μ . [3]

Theorem 1.5: Let be given the finite nondecreasing sequence of numbers $\{a_k\}_{k=1}^n$. Then the sequence of HFI $\{ \emptyset < a_k, a_{k+1} > \}_{k=1}^{n-1}$ is a repartition of HFI $\{ \emptyset < a_1, a_n > a_n >$

Proof: The thesis follows immediately from

Lemma 1.1: Let be given the finite nondecreasing sequence of fuzzy subsets $\{\mu_k\}_{k=1}^n$. Then the sequence $\{\mu_{k+1} \wedge (1-\mu_k)\}_{k=1}^{n-1}$ is a repartition of the fuzzy subset $\mu_n \wedge (1-\mu_1)$. [3]

Moreover, in special case we have

Theorem 1.6: Let the SFA be strict in sense given in [2]. Then HFI $\[\psi[a,b[]]$ and $\[\psi[a,b[]]$ are W-empty iff $\[a \] b$.

Proof: If $\[a \] b$ then by the Theorem 1.4 we get that $\[\psi[a,b[]]$ and $\[\psi[a,b[]]$ are W-empty sets. Let us assume that $\[a \] b$. Then by monotonicity of SFA and by quasi-antisymmetry of FIE (see [2]) we obtain $\[\psi[a,b[(x) = g(a,x) \land g(x,b)) \] 0.5$ and $\[\psi[a,b[(x) = g(a,x) \land g(x,b)) \] 0.5$ for every $\[x \in \] a,b[\] b$. So, HFI $\[\psi[a,b[\] a,b[\] b]$ are not W-empty sets. This fact puts an end to proof.

2. The fuzzy finite Borel family

Let FI be generated by SFA with unfuzzily bounding FLE (see [2]). The condition (1.2) proves universality of the following definition.

Definition 2.1: If $\widehat{\mathcal{D}}_g = \{\mu : \widehat{R} \to [0,1]\}$ is a family of all such fuzzy subsets μ that

$$\mu = \mu_1 = \max_{k \le n} \left\{ \psi \left[a_k, b_k \right] \right\}$$
 (2.1)

or

$$\mu = \mu_2 = \max_{k \leq n} \left\{ \psi \left[a_k, b_k \right] \right\} \vee \psi \left[a_{n+1}, +\infty \right]$$
 (2.2)

where $\{a_k\}$ and $\{b_k\}$ are increasing sequences of numbers in \widehat{R} , then $\widehat{\beta}_3$ is called a fuzzy finite Borel family.

Definition 2.2: If fuzzy algebra (6-algebra) $6 = \{\mu : X \to [0,1]\}$ [1] does not contain the fuzzy subset $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_X : X \to \{\frac{1}{2}\}$ then it is called a soft fuzzy algebra (6-algebra). [3]

Lemma 2.1: Let be given any nondecreasing sequences of fuzzy subsets $\{\mu_n\}$ and $\{\psi_n\}$ such that the numbers of their elements are equal. Then the sequence $\{v_n\}$ defined by the identity $v_n = \mu_n \Lambda(1 - \psi_n)$ satisfies the following property

$$1 - \max_{k \le n} \{v_k\} = \psi_1 v \max_{k < n} \{(1 - \mu_k) \wedge \psi_{k+1}\} v (1 - \mu_n) \cdot [3] (2 \cdot 3)$$

Theorem 2.1: Any fuzzy finite Borel family is a soft fuzzy algebra. Furthermore, any fuzzy subsets μ_1 and μ_2 defined by (2.1) and (2.2) satisfy

$$1 - \mu_{1} = \varphi[-\infty, a_{1}[\vee \max_{k < n} \{ \varphi[b_{k}, a_{k+1}[\} \vee \varphi[b_{n}, +\infty] , (2.4) \}]$$

$$1 - \mu_{2} = \psi[-\infty, a_{1}] \vee \max_{k \le n} \{\psi[b_{k}, a_{k+1}]\}.$$
 (2.5)

Proof: By (2.3) we get

$$1 - \mu_1 = g_s(\cdot, a_1) \vee \max_{k < n} \{ (1 - g(s \cdot, b_k)) \wedge g_s(\cdot, a_{k+1}) \} \vee \dots$$

$$\vee (1 - g_s(\cdot, b_n)) =$$

$$= g_s(\cdot,a_1) \vee \max_{k < n} \{ \psi [b_k,a_{k+1}] \} \vee (1 - g_s(\cdot,b_n)) =$$

=
$$((1 - g_s(\cdot, -\infty)) \wedge g_s(\cdot, a_1)) \vee \max_{k < n} \{\psi[b_k, a_{k+1}]\} \vee$$

$$v((1 - g_s(\cdot, b_n)) \wedge g(\cdot, +\infty)) =$$

$$= \psi \left[-\infty, a_{1} \left[v \max_{k < n} \left\{ \psi \left[b_{k}, a_{k+1} \right] \right\} v \psi \left[b_{n}, +\infty \right] \right],$$

Nextly, by the de Morgan's Law and (2.4) we obtain

$$1 - \mu_2 = (1 - \max_{k \le n} \{ \psi [a_k, b_k [\}) \wedge (1 - \psi [a_{n+1}, +\infty]) =$$

$$= \left(\varphi \left[-\infty, a_1 \right] \vee \max_{k < n} \left\{ \varphi \left[b_k, a_{k+1} \right] \right\} \vee \psi \left[b_n, +\infty \right] \right) \wedge g_s(\cdot, a_{n+1}) =$$

=
$$(g_s(\cdot, a_1) \land g_s(\cdot, a_{n+1})) \lor \max_{k < n} \{g(b_k, \cdot) \land g_s(\cdot, a_{k+1}) \land g_s(\cdot, a_{n+1})\} \lor$$

$$\vee \left(g\left(b_{n}, \cdot \right) \wedge g_{s}(\cdot, a_{n+1}) \right) = \psi \left[-\infty, a_{1} \right] \vee \max_{k \leqslant n} \left\{ \psi \left[b_{k}, a_{k+1} \right] \right\} .$$

So, $\widehat{\beta}_S$ is closed under complement. It is self-evident that is closed under union. Since $\widehat{\beta}_{\widehat{R}} = \widehat{\psi} [-\infty, -\infty] \in \widehat{\beta}_S$, $\widehat{\beta}_S$ is a fuzzy algebra.

We have $\[\varphi[a,b[(+\infty)=0]\] = 0$ for any $(a,b)\in\widehat{\mathbb{R}}^2$. Therefore, each fuzzy subset defined by (2.1) fulfils $\mu_1(+\infty)=0$. Moreover, we have $\mu_2(+\infty)=1$ for any fuzzy subset defined by (2.2) because $\[\varphi[a,+\infty](+\infty)=1]$ for any $a\in\widehat{\mathbb{R}}$. So, $\[\frac{1}{2}\]_{\widehat{\mathbb{R}}} \neq \widehat{\beta}_{\widehat{\mathbb{S}}}$. The proof is complete.

3. The fuzzy infinite Borel family

Let the SFA (g,g_e,g_s) is generated by continuous from above FLE such that it unfuzzily bounds the real line (see [2]). The symbol $\mathbf{F}(\widehat{\mathbf{R}})$ denotes the family of all fuzzy subsets of $\widehat{\mathbf{R}}$. Since $\mathbf{F}(\widehat{\mathbf{R}})$ is a fuzzy 6-algebra containing $\widehat{\boldsymbol{\beta}}_S$, there exists the smallest fuzzy 5-algebra containing $\widehat{\boldsymbol{\beta}}_S$.

Definition 3.1: The smallest fuzzy 5-algebra β_5 containing β_5 is called a fuzzy infinite Borel family.

Lemma 3.1: The FI $\psi(a,b)$ defined by (1.1) belongs to βg for any pairs $(2,\psi) \in \{g,g_s\}^2$, $(a,b) \in \mathbb{R}^2$.

Proof: The Definition 3.1 implies that any FI $\psi(a,b) \in \beta g$.

Let be given the sequence of numbers in $\widehat{\mathbb{R}}$ $\{a_n\}_{\psi}^2 = a_n \in \{b_n\}_{\psi}^2 \in \beta g$ inf $\{\psi(a,b_n)\}_{\psi}^2 = g(a,\cdot) \wedge \inf_{n} \{g_s(\cdot,b_n)\}_{\psi}^2 = g(a,\cdot) \wedge g(\cdot,b) = g(a,\cdot)$

$$\beta_{3} = \sup_{n} \{ \varphi [a_{n}, b] \} = \sup_{n} \{ \varphi (a_{n}, \cdot) \} \wedge \varphi_{s}(\cdot, b) = \varphi_{s}(a_{n}, \cdot) \wedge \varphi_{s}(a_{n$$

Theorem 3.1: Any fuzzy infinite Borel family is a soft fuzzy \mathfrak{F} -algebra. Furthermore, each fuzzy subset μ in $\beta_{\mathfrak{F}}$ can be described by identities

$$\mu = \sup_{k} \left\{ \psi \left[a_{k}, b_{k} \right] \right\}$$
 (3.1)

or

$$\mu = \sup_{k} \left\{ \psi \left[a_{k}, b_{k} \right] \right\} \vee \psi \left[a_{0}, +\infty \right]$$
 (3.2)

where $\left\{\left(a_{k},b_{k}\right)\right\}$ is a finite or infinite sequence of pairs in \mathbb{R}^{2} .

Proof: Let the symbol Φ_g denotes the family of all fuzzy subsets defined by (3.1) or (3.2). Additionally, let us indicate $\overline{\Phi}_g = \{\mu: 1 - \mu \in \Phi_g\}$.

From the Definition 2.1 we get that each $\mu \in \hat{\beta}_s$ can be described by (3.1) or (3.2). Also $\hat{\beta}_s$ is closed under complement. Therefore, we have $\hat{\beta}_s \subset \bar{\Phi}_s \cap \bar{\Phi}_s$. This fact along with the Definition 3.1 implies that $\beta_s \subset \bar{\Phi}_s \cap \bar{\Phi}_s$ because $\bar{\Phi}_s \cap \bar{\Phi}_s$ is a fuzzy 5-algebra. On the other side, by the Lemma 3.1 we obtain $\Phi_s \subset \beta_s$. If we take into account all above facts, then we see that $\Phi_s \cap \bar{\Phi}_s \subset \bar{\Phi}_s \cap \bar{\Phi}_s$ so, $\beta_s = \bar{\Phi}_s$. The second thesis is proved.

Since the FIE unfuzzily bounds \widehat{R} , we have $\widehat{\psi}$ [a,b [$(+\infty)$ =0 and $\widehat{\psi}$ [a,+ ∞] $(+\infty)$ = 1 for any pair (a,b) $\widehat{\epsilon}$ \widehat{R}^2 . So, \widehat{L}^2 \widehat{R}^2

4. Acknowledgments

This paper is the result of the work of the Seminar on Fuzzy and Interval Mathematics directed by Prof. dr hab. Jerzy Albrycht.

References

- [1] S.Khalili, Fuzzy Measures and Mappings, J. Math. Anal. Appl. 68 (1979), 92-99,
- [2] K.Piasecki, On any Class of Fuzzy Preference Relations in Real Line II, Busefal 21 (1985),
- [3] K.Piasecki, Fuzzy Repartitions of Sets, (in print).