The Axiomatics of Pan-Boolean Algebra

Zhu Wujia* Zhang Nanlun** Xiao Xian***

- *Dept. of Mathematics, Nanjing University, China
- **Dept. of Automation, Wuhan Institute of Building Materials,
- ***The Group of Mathematics, Meteorology College of the Airforce, China

Summary

If some practical problem cotains variables X_1, X_2, \ldots and each variable state may be n_1, n_2, \ldots ($2 \le n_i < \omega$, $i=1,2,\ldots$), then it is said that the practical problem constitutes a multiple-state system. In this paper, the axiomatics of pan-boolean algebra has been established, thus a method of logical analysis dealing with multiple-state system(for example, fuzzy models of static) is provided.

The axiomatics is as follows:

- . Fundamental symbols
- (1) variable symbols: X_1, X_2, \ldots ;
- (2) state number symbols: $n_1, n_2, ... (n_i \ge 2, i=1,2,...)$,
- (3) state variable symbols: $x_i^1, x_i^2, \dots, x_i^{n_i} (i=1,2,\dots)$,
- (4) operation symbols:+ (logical sum), · (logical product),
- (5) constant symbols:0,1;
- (6) logical predicate: = ,
- (7) technical symbol: (,).
- 2. The rules of formation
- (1) Singular constant symbol or state variable symbol is panboolean expression.

- (1) If A and B are pan-boolean expressions, then (A+B) and (A·B) are also pan-boolean expressions (The exteriorest brackets by be omitted).
- (b) All pan-boolean expressions can be produced only by (1),(2). 3. Axioms

fhere are five axioms in pan-boolean algebra (PB).

- A; (Commutative laws):
 - (1) A+B=B+A,
 - (2) $A \cdot B = B \cdot A$;
- A₂ (Distributive laws):
 - (1) $A \cdot (B+C) = A \cdot B + A \cdot C$,
 - (2) $A+(B\cdot C)=(A+B)\cdot (A+C);$
- A_{∞} (Identity laws):
 - $(1) \land 10= \land$
 - (2) $A \cdot 1 = A;$
- A. (Associative laws):
 - (1) (A+B)+C=A+(B+C),
 - $(2) (\Delta \cdot B) \cdot C = \Delta \cdot (B \cdot C) ;$
- Λ_{τ} (Laws of state):
 - (1) For every variable X_i , there exists one and only one
 - n_i;
 - (2) $x_{i}^{j}.x_{i}^{k}=0$, $(1 \le j < k \le n_{i});$
 - $(3) x_{i}^{1} + x_{i}^{2} + \dots + x_{i}^{n_{i}} = 1.$

The operations of complement in PB can be defined recusively as follows:

Definitions

 $(1) \ \overline{O} = df \ i,$

(2) If the complements of A and B are \overline{A} and \overline{B} respectively, then $\overline{(A+B)} = df(\overline{A} \cdot \overline{B})$, $(\overline{A \cdot B}) = df(\overline{A} + \overline{B})$.

By using a series of lemmas, we can prove the laws of complementarity in PB:

Theorem For any pan-boolean expression A, we have $A+\overline{A}=1$ and $A\cdot\overline{A}=0$.

Therefore, any formal theorem in boolean algebra can also be proved in pan-boolean algebra, except that \overline{A} has different contents.