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THE CONVERGENCES I[N EIGHT KINDS OF
HYPERTOPOLOGIES AND THEIR APPLICATIONS

Zhang Xing-hu & Wang Pei-zhuang

(Dept.of Math., Beijing Normal University, Beijing, China)

'n literarures [1},{2J,Wang has introduced eigh: “inds of hypertopoliogies

1

through lairice topologies.These eight kinds of hypertopologies include the
hypertooologies provided in [3],[4]),[5].Moreover,they include the several new
hypertopologies not defined before.In this paper,taking convergences of sct-net
in base space as tool,we give the laws of convergence for each of eight hyper-
topologies,and give the rigion limit poinls of set-net in,and make a comparison
between at! kinds of hypertopologies.Extraordinarily,in collection %€ of all
clopen subscts of X, the comparison between the eight kinds of hypertopologies
has a good result.Using the convergence-tool,we will discuss the coincidence

of the oroduct space of the hyperspaces deduced from X,Y and the hyperspace

of the product space of them.Finally,using convergence-tool,we will discuss the

relations between the hypertopologies in X and the order topology,the Scott

topology in power set latticeﬁb(X).

Koywords: Hypertopology, Hyperspace, Set-net, Convergence, Comparision

betweer aypertopologies, Product of hypertopologies.

In this paper, we adopt essentially the notations in (1],[2]. For conve—

nience later, we begin by listing some of our pricipal conventions and nota-
tions:
CONVENTIONS :

(1) A set-ner {Ad}déD in X is a net in the power setjﬁ(x) of X;

(20 < indicates the set—theoretic inclusion, % indicats the proper
inclusion.

) Let (X,%9) be a topological space, 9XX) denotes the power set of X.
%ﬁ(x)ésﬁ<x>\{x},ogﬁ(x>§9ﬁ(x)\{¢},oyo(x)égb(x)\{¢,x}.j?(x) denotes the collection
of all ~losed subsets of X, @(X) denotes the collection of all open subsets of X,
H(X) dionotes the collection of all clopen subsets of X.F ranges over closed
subsets ol X, ranges over open subsets of £.and H ranges over clopen subsets
of X.

S Fo cach ALGP(Xi,ler A :»{B(_QO(X)IBDA},and A ={BEP(X)|BeA},and for

cach ) S I @‘C:—.{;\,CfX\A]A{—,@} .



i5) There are definitions as follow in literatures [1],[2]:
T10<90(x)) denotes the hypertopology in X which base is %'Q{G]Géfﬁ}.That

M S s N i i — i1l
{Ad}dQD converge to A in (Qﬁ(X),TIO) will be denoted as A A,and will be

d

called convergence.
T01(9ﬁ(X)) denotes the hypertopology in X which base is §zé(FlF4f?j. th-

at [A converge to A in (5D(X),T01(§p(X)) will be denoted as A ,——A,and

dvden d

will be called anti-convergence.
[N .
T20(5O(X)) denotes the hypertopology in X which subbase is (beg{jﬁ(X)\G‘
G%f%}ij{gﬁO(ﬁ.That {Ad}d%D converge to A in (sp(X),TZO(ﬁb(X)) will be denot-

ed as Adaﬁ»A,and will be called pan-~convergence.

Toz(ﬁﬁ(X)) denotes the hypertopology in X which subbase is (@??ﬁé{sﬁ(x)\
Flree , ! . .
" F ijU{gﬁ(X)} That {Ad}dQD converge to A in (5ﬁ(X),T02(§D(X)) will be

denoted us Ad—~”A,and will be called anti-pan-convergence.

According to the four kinds of hypertopologies above,we can obtain four
kinds of hypertopologies as follow:
T]1<5ﬁ(x)) denotes the hypertopology in X which subbase is ng37_. That

{Ad}déD converge to A in (§D(X),T11(5ﬁ(X)) will be denoted as Ad~—9A.
le(ﬁg(X)) denotes the hypertopology in X which subbase is g;t)(@fyp.

That {Ad} converge to A in (QD(X),le(gp(X)) will be denoted as Ad—ﬁoA.

d£D . .
T2](3D(X)) denotes the hypertopology in X which subbase is (?&yp\)(EZ)C.

That {Ad}d%D converge to A in (QD(X),T21Q?5(X)) will be denoted a% zzd—-——%Aé
T72(3P(X)) denotes the hypertopology in X which subbase is (%’»\j(@?»
o . ) o .
That {Ad}dQD converge to A in (Jé(X),TZZ(Qé(X)) will be denoted as Ad——eaA.
(6) Let PCIB(X),Ty(PD) indicates the deduced topology onF of Tw(gﬁ(XO)
where w ¢ {10,01,20,02,11,12,21,22 § .
(7) Tuxéz) denotes the space (ﬁﬁ,Tw(ﬁﬁ)), and sametime denotes the top-
ology Ty( ).

§1. Basic Definitions

Definition 1.1 Let {a be a set-net in topological space (X,f&).

a4y aep

Define ]imDAd:{x£XlFor every neighbourhood U(x) of x, there exists a sub-

net {A of net{A such that U(x)n Adt¢ for every d%D/}.

dbdZD d&déo

limDAd:{xéleor every neighbourhood U(x) of x,there exists dq 4D such

that Ulx)n Ad:¢ for every dz<j°}.
1imDAd:{xéX‘There exists a neighbourhood U(x) of x and a subnet {Ad
such that U(X)C:Ad/for every d@D’}.

}d%D

limDAd:{xéx'therehexists a neighbourhood U(x) of x and d§D such that
U(x)c:/\d tfor every d )dc}
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PROPOSITION 1.1 Let {Ad}déD be a set-net in X.Then

(1) Lim A, <lim A, (2) Timpa, =Tim A,

() L;mDAdc:TTaDAd, (4) 11mDAdc:f::D 4

(5) llmDAd LLEDAd and TT;DAd are not comparable in general.
PROPOSITION 1.2 Let {Ad}déD be a set-net in X.Then

(1) Lim A, and TTEDAd are always closed in X.

2) llmDAd and T?EDAd are always open in X.

PROPOSITION 1.3 1If {AdﬁdzD, is a subnet of {Ad}déD.Then

(1) Timga ,STim A, (2) Timga STim A,

(3) l_lgl_d d,:llmDAd, (4) l_gdA ,DllmDAd

PROPOSITION 1.4 Let {A be a set-net in X,and A{GB(X).If there exists

a}a¢p
d4D such that AjcA for each d7d,. Then

e - I ?—' . . A'—_
(1) ILmDAd llmDA~A, llmDAdczllmDA_A,
. — T e
2) 11mDAdC11mDA:A, lim Adc|,m A= A
- i T!
PROPOSITION 1.5 Let {Ad}déD be a set-net in X.Then

(1Y) T A _ U{llm d’{Ad}déD a subnet of {Ad}déD}'
(2) 11m A = {llmﬂAd’{Ad}dzD,is a subnet of {Ad}déD}°

(3) leDAd~ n{llmUA 1{5 }d¥D/15 a subnet of {Ad}déD}'

{¢ = ’ 2 .

(&) llm Ay r\{llm d’{Ad}déD is a subnet of {Ad}déD}

Proot.{1) Taking xélimDAd (if limDAd¢¢).We let K:{(U,d)’U is a neighbourhood
of x,deD and U ﬂAd¢ ?}.The order in K is defined by (U;,d; ) 7 (Uq ,dg) PE-NN Uy €Uy
and dy 7 dg.According to the fact that:for every neighbourhood U(x) of x, there

exists a subnet {A } such that U{x)nN Ad#¢(in¥D'),K is a direct

: )
ataen °F (Pavaep
set.Let f: K——D be defined by f((U,d))=d.Then K is a subdirect set of the direct

set D,and (A is a subnet of {A and we have xélimKA ytherefore 1imDAd C

KT k4K al acp k

k){llmlAd'{Ad}déD/lS a subnet of {Ad}déD}'
lim :DKJ{llm d‘{Ad}déD is a subnet of {Ad}déD} is obvious.

The proofs of (2),(3),(4) are analogous.
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§2. The Judging Laws of Net Convergence and

the Determinations for the Regions its Limits in

THEOREM 2.1 (The judging laws of limits existing) Let (X,l&) be a compact

Hausdorff space and {Ad}déD be a set-net in X.Then
(1) /\d-———\A == limDAdCZ\; conversely, HIEDAdCA = Ad—-—->A.In particular,

in hyperspace (g,TlO(?}’)),net {Fd}d(-D converge to F(—?,i.e.,Fd_:F PEEN
]imDFdCF.

(2) Ad—ﬁA = gDAd:’A; conversely,lim AdDA => A

in hyperspace (‘@,TOl(g/)),net {Gd}d(-D converge to G{-@,i.e.,Gd—-;G(:%

d—,-A. In particular,

lim (,dDG.

=0

(3) A A &= 1im_A <A,
, .
(4) Ad—7]A = l__lﬂDAd:)A.

(5 _ _ _— ) . — .
(5) A=A = llmDAdCK and Aci@DAd,conversely,llmDAchCl__lTrEDAd

(therefore Ar:lmeAd:l_l__rEDAd) = Ad——f)A.In particular,in hyperspace (?f,'l‘ll(?e)),

net {Hd}d#D converge to Hé}’e,l.e.,Hd—)H & HzllmDHdZI:l—TDHd'

(6 Ad-ﬁA =3 llmDAdCA and A< I_LrllDAd(therefore A:llmDAd:lﬂDAd), conver—

. —r- A i ~ :—. 15 — _ . .
sely.l,]mPLdCA I_EEDAd(Lherefore A llmDAd lim Ad) > Ad DA.In particularly,

in hyperspace (@,le(?)),Fd»—-ﬁF &> F:limDFd:]_imDFd.
= o o =
(7) 24 — i i ?l. = i -
( Ad——\)A > llmDAdCA and A < llmDAd(therefore A 1mDAd llmDAd),con

I

ersely, 5 . . = - o .
versely hmDAdCACgDAd (therefore A llmDAd gDAd) == Ad—\}A n particu

tarly,in hyperspace (“9,T21(‘:g’)),Gd———$G($) GzllmDGd:LﬂDGd.

p 7 . -
(8) Ad—))A &S llmDAdDA DllmDAd.
Remark. The results in (3),(4),(8) always hold for arbitrary topological

space (X, (9).
Proof. We prove only (1),proofs of the rest of the statements are omitted.

(1) Suppose Ad~——>A.IF xégg,then there exists a neighbourhood U (x) of x

such that UJx)ﬂA:#}(because X is regular),i.e.,ACI—J,,(X)C .Because Ad———AA,there

) R - c . —
exists d +D such that Ach (x) for each d?,dc,l.e.,Adn(UQ (x»:(t)(\j d7dy).

Thus,x{?iﬂDA _Therefore ADTim A

a Dg’
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Conversely,suppose 1lim AdCA.If there exists an open set UDA,but {A

D d]l d£D

Is not eventually included in U.Then there exists a subnet {AdquD of {Ad}déD
such that AdlﬁU(Vd'(-D').Let xdeéAdr\U,then {xdl}d;{D. is a net 1in UC.Because X is

compact,so is ue. Thus there exists a subnet {x ., of {x 1., which converge
d"ld dJd%p 8

”-<-D”
ro x4U e A% .Because {Xd"}d"(—D converge to x4£X,for each neighbourhood U(x) of x
there exists d;'{-D” such that xd,,(-U(x) tor every d”>/ d:,therefore AdunU(x);t (#) for
every d >o .Thus x#llmDAdCA.It contradicts xéAC,therefore Ad———>A.

COLLORY 1. (Determinations for regions limit points in) Let X be a com-
pact Hausdorff space.Then

(1) In hyperspace (%(X),Tlo(ﬁ(){)),the set {Aé@(X)IAd——AA} consisting of
. . . . - + . . . 4 T ~
all limit points of net {Ad}déD is included in the set {ATCﬁ(X)l 11mDAdCA}and
includes the set {A(—@(X)] 1imDAdCA},1.e.,{A4¢(X)' llmDAdCA)c{A(-¢(X) Ad—~_\A}

C{A(—@(X)IlimDAdc K}.In general,the inclusions are proper.But in hyperspace

( i R o - .
(7,T10\‘7)),the set {Fé?’Fd F} consisting of all limit points of net {Fd}d(-D

in7 equals the set {F(—‘?!limDchF} ﬁ(llm F )n?

(2) In hyperspace (@(X),TOl(ﬁ(VX)),the set {Aéﬁb(x)! Ad——,A} consisting of
all limit points of net {Ad}d(—D is included in the set {A(’¢(X)’I_ABDAdDA°} and
includes the set fa4gD(X)| Lim pA >4} vie. falgd(x)] I:i:mDAdDA}C{Aéﬁ(X)lAd—ﬁA}

C{A(»SD(X)| llmD de°} -In general,the inclusions are proper.But in hyperspace

(%,TO](%)),the set {G(—f&’Gd—yG} consisting of all limit points of net {Gd}d(-D

equals the set {G4-§

LimyCy>C}=(Limyc ) n G -
{37 In hyperspace (QD(X),Tzo(gﬁ(X)),the set {A#ﬁé(X3|Ad-—UA} consisting
S ol . . . ya ( == —(1i .
ot all limit points of net {Ad}d(—D eaquals the set {A Zb X)lA)llmDAd} llmDAd)
41 In hypersnace (@(X),TOZ(¢(X)).the set {AL@(X)’Ad—WA} consisting of
D im int o : ‘ i —(14 )
all iimit points of net {Ad}diD eaquals the set {A gﬁ(X)l ACMDAd} (l_ugDAd),
“5) in hvperspace (@(X),Tll(ﬁ(x)).the set {A4¢(X)|Ad——>A} consisting of
) Cmi s . . L D Erae -
call lim points of net {Ad}aéD is included in the set {Aéjﬁ(X)'llmDAch,and
gDAdDA } and includes the set {AégD(X)I A=1lim A _llm A } In general,the
inclusions are proper.But in hyperspace (H,Tll(‘]f)),the set {H%}’f’Hd—aH}

consisting of all limit points of net {Hd}déD in?{’ equals the set {H(—?{‘H:



i8
Iim H vllm Hd} It is obvious that (Ff, T (3@)) is a Hausdorff space.
(6) In hyperspace (9ﬁ(x),T12(SD(X)),the set {Aégﬁ(X)IAd—ﬁaA} consisting of
all limit points of net {Ad}d4D in 96(X) is included in the set {Aéﬁp(X)[K:

1imn g =lim Ad} and includes the set {A%gﬁ(x)'A 1im _11m A } In general,the

™4

inclusions are proper.But in hyperspace (9Z,T..(9%)),the set {F« F —»F
persp 12 d

consisting of all limit points of net {Fd}déD equals the set {Fé?ﬂF:ITHDFd:

lim Fd} It is obvious that (7F, T (iZ)) is a Hausdorff space.

{7) In hyperspace (jﬂ(X),TZl(gﬁ(X)),the set {Aégﬁ(X)lAd—4>A} consisting of
all limit points of net {Ad}déD is 1nc1uded in the set {A{ﬁﬁ(X)IA *1lmDAd
Lim A } and includes the set {AQQD(X)'A]JmDAd~11m Ad}.ln general, the inclusions

are proper.But in hyperspace (& T, (% )),the set G4 G,—»G} consisting of
P 21 d

all limit points of net {Gd}déD equals the set {G({&lG:T?EDGdzlimDGd}.It is

obvious that (59’T2](99)> is a Hausdorff space.
(8) In hyperspace (ﬁﬁ(x),Tzz(gé(X)),the set {AéﬁD(X)lAd—aaA} consisting of

all limit points of net {Ad}déD equals the set {A%jD(X)lllm A :)A:)llm Ad }

d
(11m A b (lim Ad)'.We can obtain from this that ,in general,Tzz(gb(X)) is not

a Hausdorff space.

Remark: The results in (3),(4),(8) are always true for arbitrary topological
space X.

COLLORY 2. Let X be a compact Hausdorff space.Then

(1) Tf a net {Ad}déD in (5b(X),T12(Sb(X)) is convergent,then it has unique
closed (in X) limit point:A=lim A =lim_A

D’d —D'd°’
Iy 7 ) ; : . : :
(2% 1t a net {Ad}déD in (gb(X),T21($b(X)) is convergent, then it has unique

open (in X)limit point:A= llmDAdkgsgDAd.
3. The Comparison between the Eight Kinds of Hypertopologies
THEOREM 3.1. Let X be a compact Hausdorff space.Then, in setgﬁ(x), the

relation between the eight kinds of hypertopologies indicated in figue 1.
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There the ropologies upper are finer than the lower,
and two topologies at the same level line (dotted

line) are homeomorphic in following map:
¢ PX) — P(X)

A —> AS

THEOREM 3.2. Let X be a compact Hausdorff space.

Then, in the collection @7 consisting of all closed
subsets of X, the relation between the eight kinds
of hypertopologies indicated in figue 2. There, the

topologies upper are finer than the lower, and if

Y i e ' (
Tll(ﬂ?) is compact, so is T22\€Z).

THEOREM 3.3. Let X be a compact Hausdorff space.

Then, in the collection % consisting of all open
subsets of X, the relation between the eight kinds
of hypertopologies indicated in figue 3. There,
the topologies upper are finer than the lower, and
if Tll(fg) is compact, so is T22(‘_-g').

THEOREM 3.4. Let X be a compact Hausdorff space
Then, in the collection “Z¢ consisting of all clopen
subsets of X, the relation between the eight kinds
of hypertopologies indicated in figue 4. There, the
topologinr< upper are finer than the lower, and two
topologies at the same level line (dotted line) are
homeomorphic in the following map:

< F—> ¥

oo HC

Proot. Lf a net {H converge to H in

o dep

1 CY IS/ B I 1 ;
\y{,Tl](¢€'), then H*llmDHd*LEEDHd’ therefore,

=H, Tim.H ,=lim H =H, lim H . =lim H . =H.Ttu

LimpH =Lim D 'd ==p"d D d D d

12
.Tdy/.\\.Tlo.
'TOZ'-'TZO“'

Figue 1.T indicates To(F (X))

Ty } Ty
|/ T\

To/ \/10
Too  Tyo

Figue 2. Tw indicates To(7%)

Tll
Tsq } T
Tys
ﬁfl Tio
Too  Tao

Figue 3. T indicates TLKQQ)

T
11
N

T, . - T .
21 12
v
.Tol,..., TlOU
VoY
A

Figue 4. Ty, indicates T (%)

s we have Hd—jaH, Hd—49H ,
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and Hd—aaH in @€ . So, Tll(?f) is finer than le(?% \}{) and Tzz(gf).

The rests of the proof is analogous, omitted.

4. Product Spaces of Hyperspaces

fn this section, we will discuss the coincidence of the product topology
of hypertopologies deduced from topological spaces X,Y and the hypertopology
of product topology of them. If we discuss the problem by the means of neigh-
bourhood, it will be difficult and complex. In this section, taking conver-
gence as a tool, we can discuss the problem simply, and obtain some good results.
In this section, if needed, we regard (A,B) as A)(Béjﬁ(X)(Y), and letcﬂé(X)XojU(Y)
indicate the collection of all nonempty '"rectangles' in gﬁ(X)(Y).

LEMMA 4.1. Let {AdXBd}d(_D be a met in gH(X)X ,9P(Y). Then

L (A X B)DAXBL DX P(Y) &= lim A, DAL B(X) and lim B DBLIKY).

Proof. Because leD(Adx Bd):LimDAd)<limDBd, the result is obvious.

LEMMA 4.2. Let A XB,}y,  be a net in gp(X)x P(Y). Then

11

5

(A XB)DAXBE HOX P(Y) &> Lim A DAL, P (X) and lim Lim B D BL, PY).

LEMMA 4.3. Let {Adx Bd}d@ be a net in Ogb(x)xugﬁ(Y).Then

Ti’EDAchQOgé(x) and mDBdCBéow(Y) —> mD(Adx BO)CAXBEP(XIX PY).

LEMMA 4.4. Let {Aded}d(_D be a net in gB(XIX ,9P(Y). Fhen

H

—

fmpA S AL (X) and Tim B EBL OP(Y) =3 Tim (A, XB,) CA XBL FB(X)X P (V).

LEMMA 4.5. Let X be a compact Hausdorff space. Then for arbitrary net

{Ad}dénfi,;ﬁ(x), we have 11m ¢;¢

11,[2]
Proot. Because X is compact, so is le(ogb(x))[ L J. So there exists a

; of net

{*4'tdep

Thus, 11mDAdjjllm.A 11mIj dé g§(X),1 e., lim Ad# ¢

subnet

{Ad}déD such that {Adod%D'iS convergent in (ogb(X), leﬁjﬁ(x))).

LEMMA 4.6. Let X,Y be both compact Hausdorff spaces. {Ad)(B be a net

alacn
JPXOX gP(Y). Then mD(Adx B,)Ca xBéozb(x)xogS(Y) :—_>HEDAch4°¢(x)
and leﬁdCB(—°¢(Y).

Proot. Suppose xéllmDAd (because limDAd4¢>), because lim A {]_lm]jA ’ /



21

! is & i 2 f
{Ad'}déD' is a subnet of {Ad} déD]!, then x{lim /A, for some subnet {Ad}d(—D'O

{Ad}d(-D' Because Y is a compact Hausdorff space, llmD,Bdcf(t)(by lemma 4.5).

Taking yélimD,Bd, , then y(—llJD,,Ad., for some subnet {Ad"§d"(-D Of net {Ad'}d’QD"

Thus we have x(—l_i_mD,A CllrnD,,A w, and y&lim w. Therefore (x,y)(—li_mD,.Q%d..x

d d D" d
Bd") CmD(AdXBd) CAXB. So x£A and further THDAch4°75(x). And same reason,
we have HTnDBchéogp(Y).

But in general, for a net {Adx Bd}d(-D in °¢(X)Xo¢(Y), ﬁD(Aded)C
AXBE PO X PV =45 Tima €aé,gP(X) and Tim B, Be,P (V).

THEOREM 4.1. Let X,Y be both compact Hausdorff spaces. Then

(1) T, (CFCOIRT, J(F(Y)) is equivalent to T, ( ZF(X) x ZF(Y)).

(2) Ty C G OOOXT, (Y (V) s equivalent to T ( G x (1)),

(3) T, PEOIRT, (P (V) is equivalent to T ,(,POOX P (V).

(4) Tll(o?{(X))XTll a}{(Y)) is equivalent to 11 D?C(X)X Tf(Y)).

05 T, € TFOOIXT, , (ZF (X)) is equivalent to T ,( TF(X)X ZF (Y)).

Proof. According to the lemma 1 —— lemma 6 and the results in section 2,

the proof is simple. So omitted.

LEMMA 4.7. Let {A X B}, o be a net in P OX P (Y). Then ¢ #1im (A X B,)

=Lim (A XBy)=A XBé JO(X) X ,P(Y) == Tim A =lim A =a¢ P(X) and ﬁDBd:
Lim B ,=B& P(Y).

The proof is elementary, so omitted.

THEOREM 4.2. Let X,Y be both compact Hausdorff spaces. Then T21(°§(X))X

(ofg(Y)) is equivalent to T21( .9()())( ogI(Y)).

Proof. According to the lemma 4.7, the proof is simple, omitted.

THEOREM 4.3. Let X,Y be both topological spaces. then TZO(Dﬂﬁ(X))X
T, (B (Y)) is finer than T, ( (X)X P (Y)). And T,,( P(X))XT,, (P () is
finer than T22(0¢(X)X 095 (Y)).

®root. According to the lemma 1 —— lemma 5, the proof is simple, omitted.

tnogeneral, T, ( & (X)) XT,,( & (V) properly finer than T,,( & (X)X Y,

even TZO( of&(X)) XTZO(O:Q(Y)) also properly finer than T20(0§(X)Xo$l(Y))-
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EXAMPLE: Let X=Y=[0,1] equiped with usual topologies, to be both compact

Hausdorff spaces. Q indicated the set consisting of all rational numbers in

[0,%), and suppose Q:{rl,rz, ) Qn indicates {rl,rz, rn} (n=0,1,2,+++ )
[0,%5)\Q, n=3k [0,1] n=3k
Let An:: [O,l] n=3k+1 Bn:= [O,%)\ Qk n=3k+1
[0,%) n=3k+2 [0,%) n=3k+2
Clearly, a ¢ og/(x), Bnéogmy) (n=0,1,2, -+ ) and mNmann):[o,%)x[o,%)c

[o,zéix[o,%]:l_ir_anann). Thus A KB —» [o,%)x[o,%)éog(x)x o@(Y), but

. o L7 1. = _ Loas
llmNAn-LO,l]C¥[O,2]_llmNAn, and 1lmNBn*to’1]c¥[o’2}—LLTNBn' So {An\nQN and
{Bn}n%N are not convergent respectively in T22(:9(X)) and T22(°g@(Y)), There—

fore TZZ(: °(\Q/(X)))('1‘22(0:9(Y)) is is properly finer than T22(°9(X)X°§(Y)).

We express our thanks to Zhang Da-zhi who read the manuscript and suggested
a lot of improvements. We are most grateful to Chinese-American Professor HU

Jing-wan who verified our English and suggested further improvements.
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