Logical Analysis for a Class of Complex Systems ** Zhang Nanlun Huang Shuging Wuhan Institute of Building Materials This paper proposes a logical method of analysing complex systems. Through seeking the logical connections between data we can study the relation between the complex system variables. Analysing some examples shows that this analysis is very analogous to the thought of the human's brain. It is possible to provide a way to study the complex systems. In order to solve the method of logical analysis for complex systems this paper introduces a concept to a class of complex switches in the first section, recounts the simplifying method by the Pan-Karnaugh diagram in the section, and recommends some practical examples of logical analysis of system in the third section. ## 1. Concept of A Class of Complex Switches If the switch can only output an information (1 or 0) in each action (switch on or switch off) then the switch is called a simple switch. If the switch can output more than two information in each action at the same time and these information can control more than two circuits which are independent of each other, then the switch is said a complex switch. In this paper we only discuss a class of complex switches which is shown in figure. 1. Fig. 1. the construction figure of complex switch X_1 having n branches ** He is now a visiting scholar at Washington University in St. Louis, MO 63130, U.S.A. The above switch can be shown in vector form as $$X = (x_1^i, x_1^2, ..., x_t^i, ..., x_t^n)$$ where the upper index of letter indicates the branch number of switch. The set of all branch number is $A = \{1, 2, \ldots, i, \ldots, n\}$. The lower index of letter indicates the switch itself. Definition 1: the internal AND, OR, NOT operations for complex switches satisfy the following law in tables (take X_1 for example). | AND | צ | $X_1^2 \cdots X_1^i \cdots X_n^n$ | |------------------|---|--| | צ | צ | 0 : * * 0 * * * 0 | | X | 0 | $\chi_1^2 \cdots 0 \cdots 0$ | | 3
3
5 | | | | x_i^i | 0 | $0 \cdot \cdot \cdot \times_{i}^{i} \cdot \cdot \cdot \cdot 0$ | | Jn | | | | \times_{u}^{+} | 0 | $0 \cdot \cdot \cdot \times n$ | (1) (2) (3) Introduction of the following concept is of benefit: '1' indicates x_1^i , x_1^2 ,..., x_1^n , are fully connected, '0' fully broken off, x_1^i that is the ith branch of switch X_1 is connected, $\overline{x_1^i}$ that is the ith branch of switch X_1 is broken off. Obviously $$X_{1}^{i} + X_{1}^{2} + \dots + X_{l}^{i} + \dots + X_{l}^{n} = X_{1}^{i} + \sum_{i=1}^{n} X_{l}^{i} = X_{l}^{i} + \overline{X}_{l}^{i} = 1$$ (4) The formula just shows the construction of switch X_i in Fig.1. External operations and characters of complex switches are the same as that of switch in the normal switch algebra (omited). The table is arranged to compare with the internal AND, OR, NOT operations of simple and complex switch in table 1. Table 1. operational rule table So-called switch variable is the same thing as switch. The switch variable together with the compound switch combined by switch variable through limit time operations (AND, OR, NOT) are referred to as switch function. To understand the action of switch function, we should define the Pan-minterm first. Definition 2. So-called a Pan-minterm of switch function is a AND term including all variables in function. Each variable appears once and only once as a factor in its original form, i.e. $$X^A = X_i^{A_1} X_2^{A_2} \dots X_i^{A_i} \dots X_n^{A_n}$$ where X_1 , X_2 ,... X_i ... X_n are switch variables, and A_1 , A_2 ,..., A_i ,..., A_n are a set of branch number corresponding to switch function. X^A is called a Pan-minterm for $X_1, X_2, \ldots, X_i, \ldots, X_n$. Example 1. write down the Pan-minterm of compound switch shown in the following diagram. The Pan-minterm for X_1, X_2, X_3 is: $x_{1}^{1}x_{2}^{1}x_{3}^{1}, x_{1}^{1}x_{2}^{1}x_{3}^{2}, x_{1}^{1}x_{2}^{1}x_{3}^{2}, x_{1}^{1}x_{2}^{2}x_{3}^{1}, x_{1}^{1}x_{2}^{2}x_{3}^{2}, x_{1}^{1}x_{2}^{2}x_{3}^{2}, x_{1}^{1}x_{2}^{2}x_{3}^{2}, x_{1}^{2}x_{2}^{2}x_{3}^{2}, x_{1}^{2}x_{2}$ Theorem 1: Suppose p_1, \ldots, p_n are the numbers of corresponding element in the set of number of variable branch, then the number of Pan-minterm on X_1, \ldots, X_n will be $\prod_n p_i, \prod_n p_i = p_i \times \cdots \times p_n$. Pan-minterm prossesses the following characteristic: Characteristic 1. If the sum of all the Pan-minterm for X_1, \ldots, X_n is labeled as $U_A X^A$, then $U_A X^A = 1$ Characteristic 2. If the product of all the Pan-minterm for X, ,..., X_n is iabeled as $\prod_A X^A$, then $\prod_A X^A = 0$. Theorem 2: any switch function $f(X_i^{A_i}, \dots X_n^{A_n})$ can be expressed by the sum of certain Pan-minterm for X_i, \dots, X_n , and this expansion is the sole one. ## 2. Pan-Karnaugh Diagram Pan-Karnaugh Diagram is a spread of normal Karnaugh Diagram. Now we take an example to illustrate how to draw the Pan-Karnaugh Diagram. Example 2: Suppose $X^A = X_i^{A_i} X_2^{A_i} X_3^{A_j} X_4^{A_i} X_5^{A_i}$ where $A_1 = \{1,2,3\}$, $A_2 = \{1,2\}$, $A_3 = \{1,2\}$, $A_4 = \{1,2,3,4\}$, $A_7 = \{1,2\}$ The Pan-karnaugh Diagram of above example has the following form. | X ₄ | | x ₄ ' | | X ₄ ² | | X ₄ ³ | | X4 | | | |--------------------------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | X_5 X_3 X_4 | | X [{] | X 2 | X 1 | X 2 | X 2 | X 2 | X 1 | X 2 | | | | | x¦ | 11111
12345 | 12111
12345 | | 12121
12345 | 11131
12345 | 12131
12345 | 11141
12345 | 12141
12345 | | ALL ADD COMMENTS OF THE PERSON | X ₃ 1 | X ₁ ² | 21111
12345 | 22111
12345 | 21121
12345 | 22121
12345 | 21131
12345 | 22131
12345 | | 22141
12345 | | X; | | X; 3 | 31111
12345 | 32111
12345 | | 32121
12345 | 31131
12345 | 32131
12345 | | 32141
12345 | | | ا 2ن | X, | 11211
12345 | 12211
12345 | | 12221
12345 | 11231
12345 | 12231
12345 | | 12241 | | | X; | X12 | 21211
12345
31211 | 22211
12345
32211 | 21221
12345
31221 | 22221
12345
32221 | 21231
12345
31231 | 22231
12345
32231 | 21241
12345
31241 | 22241
12345
32241 | | | | X ³ | 12345
11112 | 12345
12112 | | 12345
12122 | 12345
11132 | 12345
12132 | | 12345
12142 | | | | X¦ | 12345
21112 | 12345
22112 | 12345
21122 | 12122
12345
22122 | 11132
12345
21132 | 12132
12345
22132 | 11142
12345
21142 | 12142
12345
22142 | | a management | ×3 | X ₁ ² | 12345
31112 | 12345
32112 | 12345
31122 | 12345
32122 | 12345
31132 | 12345
32132 | 12345
31142 | 12345
32142 | | X ₅ | | x; | 12345
11212 | 12345
12212 | 12345
11222 | 12345
12222 | 12345
11232 | 12345
12232 | 12345
11242 | 12345
12242 | | | X ₃ ² | $\frac{x_1}{x_1^2}$ | 12345
21212 | 12345
22212 | 12345
21222 | 12345
22222 | 12345
21232 | 12345
22232 | 21242 | 12345
22242 | | | - | X ³ | 12345
31212
12345 | 12345
32212
12345 | 12345
31222
12345 | 12345
32222
12345 | 12345
31232
12345 | 12345
32232
12345 | 12345
31242
12345 | 12345
32242
12345 | Table 2. The numbers in small square of diagram indicate the Panminterm. For example 12121 shows the square is of a Pan-minterm x_1^2 $\mathbf{X}_{2}^{2} \mathbf{X}_{3}^{1} \mathbf{X}_{4}^{2} \mathbf{X}_{5}^{4}$ The construction characteristics in the above table are: the various variables are arranged from internal to external, X_1 , X_2 are in the most internal, then X_3 , X_4 and then X_5 . The variable values of X_1 , X_3 , X_5 , are ranged vertically, and that of X_2 , X_4 horizontally. If certain numble of variables had to be increased, only new square is added, while the position of original variable is still remain unchanged. The corresponding terms of squares can be merged or not that is determined by whether these terms are logically adjacent in the Pan-Karnaugh diagram. ## Definition 3: Logical adjacency means that: - 1. For more then two squares within one horizontal row (or vertical column), if the longest line between these squares is within internal layer variables X_1 or X_2 , and the number of squares is equal to the number of variable branch of X_1 or X_2 , then these squares are said to be logical adjacency at X_1 or X_2 . - 2. For more than two squares within one horizontal row (or vertical column), if the longest line between the squares is within external layer variables X_i and the number of squares is equal to the number of variable branchs of X_i and also the squares possess of the same position at one side of all the longest line (including the boundary line of variable X_i at this moment), then these squares are said to be logical adjacency at X_i . For example, squares 2221 and 1221, 32221 is considered to be adjacent logically, because the longest line between these squares is within variable X_i and the number of squares 3 is equal to the number of branchs 3 of variable X_i . Another example, the squares 22221 and 22211 2231 12345 are considered to be logically adjacency, because the longest line between these squares possess of variable X_4 and the number of squares 4 is equal to the number of branchs of X_4 and furthermore the four squares possess the same position at one side of all the longest lines. The third example, even though the squares 31231 and 21345 11132 are adjacent in position, but not logically adjacet, 12345 because even the longest line between squares is wihtin \mathbf{X}_5 , but two squares are not the same position of one side of the longest line. It is obviously that the mergence of the Pan-minterm by using Pan-Karnaugh diagram is essentially equivalent to use the construction from of complex switch repeatedly (4) $$x_{i}^{1} + x_{i}^{2} + \dots + x_{i}^{i} + \dots + x_{i}^{n} = 1$$ By merging the Pan-minterm and eliminating surplus factor, the simplified formula can be obtained. Theorem 3: If it is assumed that P_1, \ldots, P_n are the numbers of corresponding element in the number set of variable branch A_1, \ldots, A_n , then the number of adjacent Pan-minterm of any Pan-minterm concerning X_1, \ldots, X_n will be $\sum_{i=1}^n P_i - n$. The method to simply Pan-Karnaugh diagram is described as follows: Example 3, in terms of Pan-Karnaugh diagram, we simplify the switch function in [1]. $$Z = x_{3}^{1} x_{2}^{1} x_{1}^{1} + x_{3}^{1} x_{2}^{2} x_{1}^{1} + x_{3}^{1} x_{2}^{1} x_{1}^{2} + x_{3}^{1} x_{2}^{2} x_{3}^{2} x_{2}^{2} + x_{3}^{2} x_{2}^{2} x_{1}^{2} + x_{3}^{2} x_{2}^{2} x_{2$$ Solution: - Step 1, make drawing the Pan-Karnaugh diagram of function; - Step 2, enclose the adjacency term according to the above method; - Step 3, select the product-term and write down the simplified function expression. The principles to be followed for selecting product-term are: - a. the simplified AND-OR expression must contain all the Pan-minterm in the function; - b. the total product-term selected should be the least; - c. the factors contained in each product-term should be the least. Based on these principles the above function can be simplified as follows: $$Z=x_{3}^{1} x_{1}^{2}+x_{3}^{1} x_{1}^{3}+x_{3}^{1} x_{2}^{1}+x_{3}^{1} x_{2}^{5}+x_{3}^{2} x_{2}^{5}+x_{3}^{2} x_{2}^{5}+x_{3}^{2} x_{1}^{3}+x_{2}^{4} x_{1}^{2}+x_{2}^{4} x_{1}^{3}+x_{2}^{5} x_{1}^{2}+x_{2}^{5} x_{1}^{3}+x_{2}^{5} x_{2}^{2}+x_{3}^{5} x_{2}^{2}+x_$$ Step 4, by using the construction formula (4), we can also write down the above example in following form: $$Z=x_{2}^{\dagger}x_{1}^{\prime}+x_{2}^{\prime}x_{1}^{\prime}+x_{3}^{\prime}x_{5}^{\prime}+x_{3}^{\prime}x_{3}^{\prime}+x_{3}^{\prime}x_{4}^{\prime}+x_{5}^{\prime}x_{1}^{\prime}+x_{3}^{\prime}x_{1}^{\prime}x_{2}^{\prime}$$ - 3. Practical Examples of Logical Analysis for A Class of Complex Systems - So far the logical analysis of variable never consider the quantitative relationship of vairable. This paper tries to combine logic with quantity. Within the frame of new logic system, we can set up a Data-Logic Method of system and simplify the model. To solve the logiacl analysis of the complex systems should pay attention to the following three aspects: - 1. The relation between the variables of a complex system which can not use the means of determinacy is shown by a lot of data, so the statistical method should be adopted; - 2. The logical method should be adopted. The so-called logical method includes the mathematical logic and the judgement of man's thought. - 3. The complexity and the accuracy are a couple of contradictories. It is impossible to get the accuracy answer of complex system. Therefore, allowing the obtained answer is the approximated one (to a certain extent) can be regarded as a certain result. The so-called logical analysis of system is shown to describe the logical functions between the variables of system studied and simplify the functions, we can thereby obtain the most simple logical expression between system variables. The logical analysis of complex systems is carried out as following: - Step 1. the various cases of changing in variable are classed to transfer the relation between variables into the logical problem. - Step 2. write out the logical expression of relation between the variables. - Step 3. simplify the logical expressions. | Т | ^ | b | 7 | \sim | 2 | | |---|---|----|---|--------|---|---| | 1 | ~ | 13 | | — | | _ | | X3 | X ₂ | X ¹ ₂ | X2 | x³ | X ₂ ⁴ | Χź | |------------------|----------------|-----------------------------|----|----|-----------------------------|----| | | x l | z | | | | z | | \mathbf{x}_3^t | X2 | Z | Z | Z | Z | Z | | | Χ³ | z | Z | Z | Z | Z | | | x t | | | | | Z | | x ₃ | X 2 | Z | | | Z | Z | | | X 3 | Z | | z | z | Z | | x3 | X ! | | | | | | | | X 2 | | | | z | z | | | X ³ | | | Z | z | z | | т— | <u> </u> | <u> </u> | L | 1 | | | ## REFERENCE 1. Peray, K.E and Waddell. J.J., The Rotary Cement Kiln, Chemical Publishing Co. 1972.