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Cauchy problem under fuzzy control

V. N. Bobylev
Computing Center of the Academy of Sciences

Moscow 117333, Soviet Union

A control system, when the control is unknown and one may
only guess about its possible values, 1s considered.

The formalization is based on a fuzzy function theory.

Let n be a positive integer. Denote by Rn the nN-vector
space with Buclidean inner product < . > s Buclidean norm
|‘ and the Lebesgue measure. Let X, 3)3('_‘6 Rnand 62 O,
T,50. zet (=0,1,2 .. ana A 2, € [01]), A #0.

Denocte by T the segment [O,'t,‘] of R1 and by S*the
closed unit ball (about the origin) of Rm . Let T) QeT
and a(*> :x: € S*, DL*;!— 0.

Let

(t,%,4) = 910, T =R™ o RY

be a function continuous in (1:)3()3) and Lipschitzian in

(x,Y) with a constant [" . et A be an orthogonal nxn-
*

matrix and A be the transposed one, with E being the

identity matrix.
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i. Cauchy problem under vector control

4 vector (-valued) function is defined as a mapping of T

to Rh . Let X  and Y- be vecior functions. Let
_b’t‘
SN e up @ xg -yl

Let W, and 7V, be continuous vector functions.
Consider the Cauchy problem under vector control
-
;\: x = SICI)M> , U=Ug,
(y,u,%,)

Xy =X, .

.~

4 vector function X is called a solution of the problem

(g)u )acH) if it is differentiable and such that
et T gt(xt;“t) VT, Xo=2X,.

Theorem. A solution of (g)u)x‘o exists and is unique.
I X, and ). are the solutions of (3 )M)x")and (a)'\l’) Dcu>
respectively, then

1

T
hx. -yl < P} ug - e
0

The first part of the theorem is known [5] to follow from
Banach's contraction principle. The second one 1s a conse-

guence of Gronwall's inequality.
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2. opace of fuzzy seils

n
Consider a function from R to [0,1] that takes the value
1 at Least once, has the bounded support, is quasi-~-concave

and upper semi-continuous. Denote‘myézc>the set of all such
functions. Let M ()) NGHe O,

Giveny}n(}) , consider the function
I: _}\)‘\*(m:)z MO\‘JL§<DC,DL:>‘-J‘A(X>2 ‘3(_:\}
x

Dencte by i@* the set of all such functions,

Lemma. A function VL*() : S*-—> R1 belongs to 0\46* if and
only if it 1s

1) equal to O at the origin:

2) ‘semi-additive', i. e. the function

0 x=0,

(A x)— H (=) = 4
1<|ﬂ> x#0,

.

is semi-additive in 3

3) ‘semi-homogenious', i. e.

An*(x") < ") vy (0,x);

4) bounded in the functional semi-norm ”“ y le €4

I’ON = sup — | *()| < oo,
X

1
||



120

5) upper semi-continuous.

The duality JA¥(>——>JA () is implemented by the formula
2= max [ Gy <4 TGD y lall=a, ),

bee the 'non-fuzzy'! case [7§’3] as crucial for the proof.
The pair (f(> )JA ())wa.ll be referred to as a non-empty
bounded convex closed fuzzy subs zetJA of R (or, briefly, a
fuzzy se JA) with the characteristic functlon‘./A()and sup-
vort functionJm*C‘). Denote by aYn the set of all fuzzy sets.

The fuzzy set gx with the support function
* *
Xo —> <3C > Xo >
wil> be referred to as the set concentrated at OoC.

Fquip the set M  with an equality =, an addition +,

a multiplication by ZS and a metric \5’ by the formulae
p=Y S PO = ~Y0)

(s DO = pHO+ %0,

(O = g 2O,

*(x™) - Q*(x*)\ :

s

appropriate attributes are obvious. See also [2:].
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3. Muzzy functions

4 fuzzy function will be defined as a mapping of rr to

. Let and ~ be fuzz functions. Whenever =
WY} uﬂ‘ b d \/41 'OT
let us write f ==~ . Let

=90y = sup 70 (e 30)

fuzzy function will be called continuous if it is con-
tinuous as a mapping of T to (‘Yﬂ 7S>. Let ,3 and 'l be
continuous fuzzy functions,.
L fuzzy function \jM' will be called differentiable
(integrable) if there exists a fuzzy function o(\}q/o"t

(resp. XOJJG 48 ) such that

(3 00) ) = 2 pie)
T

SERDICE (X) PrGde) (.

The fuzzy function 't<~§<§oc will be called the function
T
concentrated at DQ‘.

Appropriate attributes are obvious.

4, Convex fuzzification

Define the correspondence

(\‘)«4)4)—'7’ Co 31(\)‘;'\7): m xm — m
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by the formula
(0 g0 Cpa))* ()

= max { g (o), 20): min{ uG,30p) 3 121,

%Y
1T will be called the convex fuzzification of the function
%‘EC :'>’
Derfine additionally the product of J'" by A as a fuzzy
set AJA equal to QOAJA .

Remark. It is evident that

M= QO(J‘-I-\)) , oYM = w(UJ“)'

Let us make the agreement to identify the pair (f;\?) and
n
the non-empty bounded convex closed fuzzy subset of R with

the cnaracteristic function

(x,94) > min {J«Cbﬁ),ﬂ(a)}

) 2n,
(i1ike one identifies pairs (1,\())a.nd elements of R ).

Lemma., The mapping

Co 8<)> T <€m¥‘rn>j)——> (W)J’)

ig continuous in (T ,J‘A,‘\)) and Lipschitzian in (JA"\)) with
the (same) constant r‘ .

The proof appeals to the commonplace 'non-fuzzy' case,
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5. Cauchy problem under fuzzy control

Consider now the Cauchy problem under fuzzy control

r

d
‘;\';DL: %I(I)M) , UG‘SIJ

CRIER I

on.xn .

\

A fuzzy function f will be called a solution of the
problem ( %)3)3:0 if it is differentiable and such that

d :
E\)‘tzwat(\j‘l)jt) VT; J‘o=g:x_n.

Theorem. A solution of (3 ) 8 )DLN) exists and is unique
(up to the =), If\j«l_ and vV are the solutions of (a)& )XH)

and (‘a )Vl )J(N) respectively, then
T4

|IJ4_--D, UF < ij(ﬂT’QT)JT

0

Indeed, the relevant mathematical structures are mutually
coordinated to the extent to apply the standard scheme based
on Banach's principle and Gronwall's inequality.

Theorem., If M and x are the solutions of (8)‘3)1ﬂ>

and <8)u)xu> respectively, then
'B.:Su' :>JA=-§9(.

The proof is gtraightforward.
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-, Linear problem

Le a particular Cauchy problem under fuzzy control let us

consider the problem

Pi ‘A
X =N +u, ueqo,
(AAN?LH) {
&ozixH.
\

Theorem, The solution of (A)‘S):XH) has the form

I—agtA *Szﬁe)(/\ e)ol@
OL

taking into account that the formal functional series

0> T SR (AY,) € (m s, )

iz & continuous - in order to be integrable - fuzzy function

(since the series consists of continuous fuzzy functions and
converges uniformly). If M and "0. are +the solutions of

(A ?@5} Dch> and (A) vL)xH) respectively, then

4‘
| po=~h, < Xj’qt,'h) dr .
0

The proof is straightforward. The solution form is deter-
minec¢ by the method of successive approximations.

l'or example, the solution of (E )») , O) has the form

T - (Q’t’1>jo as soon as IB.L‘E‘SO-
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(. Interpretation

Glven solutions\)a' and X cf (3,‘8):!.H)and (3)“»3‘»')
respectively, consider a functicnal &, — L(x) € [O)'\]

such that, for any X , the following holds:

M) =1 yr = &x)=1.

ey examp les:

L(:x,) = Lh'P\}at (x_c> ,

£

C(x) = 1\ SJ‘t (%) dt Y *.
19 |

(the integral exists because the scalar function T—?JA_C('J(-,D
turns out to be upper semi-continuous).

The number L(DL) should be regarded as a subjective eva-
Ltuation of the extent to which the vector function X can be

2 scruvion of the Cauchy problem under secret preset control

f-
d
IC ='c()T-(‘x)u> ) u:?}
( ? )
g, %, ﬁ
Xy =X, -

\.

toubjicetivity! consists, at least, in choice of concrete 3

anc b () .

¢iven problems (E,S)O)and (E )U\}O>, in both the examp-

v have L<1.>=jo(ue) as soon as ’)'CE ')o and uT‘:' uo.

g
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Index ol related notions

differential equation with set-valued solutions [47]

set-valued function

SpE

¢ifferentiable [3]

integrable [1]

ce of non-~empty compact convex sets [6]

suppoot function of a set E?]

4

O,
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