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ON ANY CLASS OF FUZZY PREFZRENCE

RAELATIONS IN REAL LINE II

Jepartment of Mathematics, Academy of Economy,

ule Marchlewskiego 146/150, 60=-967 Poznan, Poland
4o The main assumptions of SFP in real line

4471e Consistence of SFP

”\
et R be set of all real numbers with the infinity and the mi-
nus infinitye. If unfuzzy PR in R is the relation £ then we

can represent the following table of interpretations:

FR | PR, | PR
r|L | =1]K
R # |

>
RS

satisfies the next conditions:

y
N IA NV

We see that the PR

- ._—/} . ; —-l o .-‘ -1 —1 " -:i
PR = PRT ', PR,= PR, PR = FR; , FR = PR, FR = PRy PR™ '= FR o
Let us displace this nctice to the domain of FPR in'ﬁl Let SEFP

in'@'satisiies the next conditions:

4 - =2 r w— -——-:T

Se S e (4.’!) ’ Se * Se (402) ’

= . - -1 .
8 = Qg4 &e3) , ¢=¢eg4 Welt)

g— 2 é-& W‘OL)) s E_:‘T = €q (4.6)
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The conditions (4¢1) and (4.2) are always true, because they
follow immediately from the symmetry of FPRe.

Further, it is very easy verify that the conditions (4.3)=(4.6)
are equivalent and they are equivalent to the next condition
g =T

s >/ (407)

Therefore, we propose to mark off the following class of FPR.

Definition 4471: Any FPR in R  satysfing (4.7) is called consi=

stent FPR.

Any FSP in R generated by consistent FPR we shall call cone

sistent SFP, We have for it.
Lemma 441: Any consistent FPR is reflexive.

Proof's By consistency of FPR we get
N —I ]
SCsl L ¢ F=1-4d[e].
B0, the fuzzy subset Jd[¢] is a W-universum in R . It pro=

ves that KPR [ is reflexive,

Lemma 4.2: Any antisymmetrical FPRS in ® generates a consise

tent SFP such that FPR and FPRe are defined by (43) and

e |
e = QN 85 (448)

Proof: By (4e3) and (4.6) we obtain

= "'~1 -1 =,
=8 g '™ 95 Yyes = ¢

for every antisymmetrical FPRS; The identity (4.8) tollows from

&5'1), (403) and (4.5)0 [ ]
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4e24 Monotonicity of SFP

The unfuzzy PR is described by membership function
¢t B> {0,1} , too. Often, the PR is interpreted as a family
of closed interval in R . ‘'hen the mappings g (= 4x) :’ﬁ—-‘r{o,’l}
and  ¢ly,-): R—{0,1} describe respectively the unfuzzy inter=
vals [=ee,x] and [[y,+0¢] . Analogically, the mappings
gs(»,x):'ﬁ“e{o,ﬂ} and gs(y,-) describe the unfuzzy one~sie
de open intervels [-oc,x[ and ] y,+=] o As we know, if
x<y then [weo,xJec[-e,y [ and [y,+e]c] x,+2] .
Displacing this notice to the domain of SFP we mark off the

following class of one.

Deflinition 4.2: If the SFP (¢, Qo9 8 g) fulfitsthe next condi-
tions
¢ (%) Lol sT) (449)
e (¥ ) g sx) (410
for every real number Xs¥y which x<gy then the SFP is calw

lcd « monotonical one.
_.i«.daitionallg we propose to accept the following definition.

Definition 44%: Let ~ @ @2-> EO,'I:] be the membership function

01" 'Re An FR satisfying . for every XY which x<¥ con=
diticns
Yax) ¥ sY) (4.11)
Y 2 )Y wiyy ) @e12)

ig called a monotonic FR.
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for any mopotonic SFP we have
Lemma 4,%: If the SKFP is monotonic then the FPR is monotonice

Proof: From (449) we obtain
¢l sX) Lo gl-9Y) = U sY)A (T = ¢ (T NE (1Y)
for each pair ' x,y such that x<y « The condition (4.12)

we obtain by analogous way from {(4¢10). B

Lemma 4.4: If the SFP (g S e? gs) is monotonic, then we have
5 (72%) € gl¥yx)€ 3 (4e13)

for every real numbers x,y which x<y o

Frocf: By mopnotonicity of the SFP we get
< s(T9X) € glyyx) L Ty = o A1 = ¢ (7,M& 5
fecr every  x,y such that x<y .W

4e%e The main definitions
If we take into account above assumptions then we have

Lemma 4.5: If SFP is consistént then the next conditions
Q%) + 2(¥y) K1 (414)
8 (X =) + g Lo ,7) )1 | (4415)
for every real numbers X,y which xZy and the conditions

(4.9) and (4.10) are equivalent.

Ail above equiponderances are self-evidente On the face of all

{oregoing considerations we propose the following definitionse.
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Jetfinition 4el4e Any consistent FPR im R  satisfying the condi-

ticn  4e14 is called a fuzzy relation "less or equal" (FLE).

Definition 4e.5: The FPRe generated by ML is called a fuzzy rela-

tion "equal' (FEG).

Jdelinition 446: The FPRS generated by FIE is called a fuzzy rela=-

tion "less than" ( FIT)e

vefinition 4.,7: The SFP generated by FLE is called a sy<tem of

fuzzy arrangement (SFA).
T'his noticns fulfil the next thesise
Thecorem 4.1: Any FlE is well-defined FPR.

rrool: The reflexivity of FIE is showed in the Lemma 4.1. For any
(x,;«,:a‘)(:‘ﬁ5 we gets
- 17 x£2& then
(1 =2 (x,2)A Q0 2,7V (x,5) D (1 =g z,:y))Vg (x,y))/
» 0 =g (xy))vel(xy)y %,
T yy 2z then
(1= g52)AgLz,¥))velxy) ) U - 3(x,2)) ve(x,75)),
YU =e( 57)VvelxY)) % ’
- 17 vy<z<x then

(1 - SJ(X,Z)/\Q( Z,?Y))Vg(xs)’)} gvg(x,y)) %‘

‘...!x

S0, the fuzzy subset (1 = g(° ,2)A Q(2y°))vgle,-) 1isa
Weuniversum in @2 e It proves that the FLE is a fuzzy QuUaSi=CIrw

jer relatione. M
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Theorem 4,2: If antisymmetrical FR in 1? satisfies the condi-

tion (4.15) then it generates the SFA (FLE,FEQ,FIT) such that the

FR 1is FIM,
Proof: The thesis we get by the Lemmas 4.2 and 4e5. W

Theorem 4.%: FLE and FLT are monotonic FR, Moreover, their memw

bership functions satisfy the next inequalities
g C53) Y eg(x7) Y elr,y) ) -27 78 e(337) Y g(¥:x) Y g 5(Fsx) (4e76)

for every pair (X)) € @2 which x<y .

rroofs The first thesis follows from the Lemma 4.3 and from the

ldentity (4.6). The consistency of SFA implies
. ~ 1
el¥y)y 3 o *)

Therefore, by monotonicity of SFA and by the identity (342) we

obtain

¢ (X¥) ) ¢5(x,5) Y cly,5)) ‘2’
for every (x,y)e)ﬁa which X<y o The inequalities (X*) along
with the identity (446) implies that

%), ¢ 5(¥y3)

Lhis together with the monotonicity of SFA and the identity (4.6)

ouls on end to proof of asecond thesis. B
Se Suplementary assumptions of SFA

Defle quasi-antisymmetry of FLE

Tne crisp relztion "less or equal" satisfies the axioms descrie
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oing #Léie The crisp relation "less than"™ fulfils this axioms, tooe.
de see that the Definition 4.4. is more general. As we known, the
crisp relation "less or equal" is quasi-antisymmetrical. The crisp
reletion "less than" has not this property. Therefore, we propose

to mark off the next class of FLEH,

Definition 5.1: Each quasi-antisymmetrical FLE is called a strict

HLi.

The LSFA generated by strict FLE we shali call a strict SFA. We ha=-

ve the following thesis on strict FLE.

theorem 5671t Any PFLE is strict iff it fulfils the next condition
(7,%) <
¢\ 2 (51)

for every pair (x,y)e’i?z waich Xy .

froof’: The definition of quasi-antisymmetry for FLE can be exprese—
sed equivalently as follows:
_ , 4 -
5 Y)AQ(YsX)) mn D x =7

for all pairs (%,7) eﬁz o Tnis is equivalent to

X ¢y ﬁg(x,W)Ag(y,X)<§ . ™
It x<y then by means of monotonicity of FLE we get

1

3D (NN g(T,%) Y o(71X)AQ(T,X)

On the other side, the condition (5.1) implies (¥) « The proof is

comnplete.
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[ ]
Theorem 5¢2: Any FLE is strict iff generated by it FILT satisfies
the {ollowing condition

2 > 3 (5+2)

for all pairs (x,}')e§2 which XY o

Froof: The thesis follows immediately from the consistency of SFA

and from (5¢1)s 1B

Therefore, each FIT satistying (5.2) we shall call a strict FIT.
Obviously, each strict FIT generates by the identity (4e3) a strict

FLbe
Yele Continuity from above of FLE

Let {xn}\Lx and {yn}"\y « Then we observe that

{[—-w,xn:]}\], [-o¢,x] ana {E:Yn;*' 00:[}"1' Cy,+e] . Displacing
tnigc notice to the domain of FLE we mark off the following class

of ones

Def'inition 5e2: Any FLE fulfilling the next conditions
{e(-x )}V gte,xy (543)
sty )} Vv oely, <) (5e4)

i3 called a continuous from above FLk.

‘'heorem 5.%: Any FLE is continuous from above iff generated by

it rUI' is continuous from below ie.e.

{gs(xn,‘)}’l‘ 35(%s %) {5.5)

BsLarg P o L,y (5.6)



90

Prooff:s This thesis follows from consistence of SFA., W

Thecorem Se4: If FLE is continuous from above then we have

fggt sxy P @l yx) (5.7)
festrns b el3s ) (5.8)
{3 )P g g *) (549)
RBEHINT gg(-ry) (5410)

for such sequences {xn} and {y,} ‘that x>x and

y,Ky for every positive integer n .

Froofs From monotonicity of SFA we obtain

¢ ax) L g0 rXy) & g(er¥y) o
It proves (5e7)e Similarly we can prove the next thesis.®

5e3s Real line unfuzzily bounded

Finally, let us consider the following class of FlLbe

AUNSD

Definition 5e%: Let B RUNSU

and are unfuzzy nonstrict

dominant and unfuzzy nonstrict undominant in R generated by
~UNSD and EUNSU

fLbe I R are not empty sets, then the FlL&

is called an unfuzzily bounding Fli.

It 1s very easy check that the FLE unfuzzily bounds the real

) 7~
line R 4 because we have:



oy |

fnecrem Sev: The next conditions are equivalent:
AUNSD
HUI»J # ¢

»’t“’ll
L 3 o+ o
/ ve g (+92,7)
o g("'w"f' o) = 1
o \7(/\ g(x,...,)c) = 1
X & i
“ +ocyx) = O
xe'/é“ gs(
if QSU-O&,... ®) = 0
g Sl 3 . 3 - ™ -y . ;N-SD p . R
croofs From monotomieity of FLE we obtain (<) = g(+=ey7)

inis.result along with definition of unfuzzy nonstrict dominant
sreves that, the conditions (2) and (b) are equivalent. Since the
#L.. is monotonic, the conditions (b), (¢) and (d) are equivalent,
tcue from consiLstvency of FLk we get the equiponderance for the
conaitions (d) and (e)e The last equiponderance follows from mo=

nctonicity of FLT. W

fheorem Se.o: he next conditions are equivalent:

anf I :#¢

v/ A _ g (yy=02) = 1
yeir

U g(-—w,-—y,) = 1

SV VA Q(~0eyx) = 1
Xe
X e

i
C

ty Qg \=02y= 20)
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ine prooi of abcove theorem is similar o the last one.
ten=rke AlL oresented above assumptions and results will be emploe
rea an domgin of fuzzy intervals and further in the theory of pro-
savility on Tuzzy real line,
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