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Existence and Uniqueness Theorem
of Standard Basis of Fuzzy Module

Zhou Kai-qi (é? ff'ﬁ'\ )
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Abstract

In this paper, a new concept on fuzzy module is presented,
and the existence and uniqueness theorem of standard Bmsis of fuzzy
module is g'ilven,' i.e. finitely generated sequential fuzzy module has
a sole standard basis under minimal conditione
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We discuss the linear spaces based on fuzzy algebra (O, 1)c

Definition 1¢ let V be a nonempty set, R be a fuzzy algebra
(0y 1) with the operations a + b = sup {a, b , ab =inf {a, b} ,
if V is a linear space over the fuzzy algebra R, it is called a fuzzy
module,

Definition 2. A subset W of fuzzy module V is a fuzzy submodule

iff kudgqVew, (Yu,vew, VK, 2eR)

Exampleo The set of all solution vectors of fugzzy relation equa~
tion AX = B (A, B are fuzzy matrices, X is a fuzzy vector) is a
solution submodule.

Proposition 1o Let S be a nonempty set of fuzzy module V.
The intersection of all fuzzy submodules of V which contains S is a
fuzzy submodule, It's called a span of S, and is denoted by{ S>,

Definition 3. A basis for fuzzy module V is a minimal spannw~
ing set for the fuzzy module,

Definition 4. A fuzzy module W is independent iff U is not a
linear combination of elements of W\ {U} for any U€ W. If there
isa U & W which is a linear combination of elements of W\fuj
it is said to be dependent.
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Proposition 2, [Every basis of fuzzy module V is independent,

Proof let B be a dependent basis in V, there exist b & By
which is & linear combination of elements of B\ {b} « Since B\{b}
i and B \{b} is a set of generators of V. This is a cont)adice
tion. This» completes the proof,

A fuzzy module V is said to be finite spanning if set of
generators of V is a finite set,

Definition 5 A fuzzy module V is called a sequential fuzzy
module if and only if V is a sequential set, such that

YU su (VreRk, uev)
Uty Z Supfu,u,; (4,4 €v)

Definition 6, A basis C of a fuzzy module V is called a
standard basis iff whenever (;, =3 )ﬁ‘j C/ for &, ¢ € ¢
then G = YM Cs

Definition 7. A sequential fuzzy module V is minimal condi-
tional iff a chain of any subset of V.

Gz 20,2 -~ 24, » - -

The process will end in a finite steps, i.es there exists a
natural number N, such that

a,v:dy+’= .~ . :ay_‘_?:"'
Proposition 3. If sequencial fuzzy module V is minimal cone

dition;. Then VXV X -~~~ XV is minimal conditiongé too.
Proof A chain of any subset of VX V X:-'XV,

o) (l) «) (‘1) (m (h}
(0587 &) 2 (85,07, . 4" 2 - 2 (ay, .0y
hence
(1) () A .
200> oz aPz o e,

Since V is minimal conditioned, them for amy s there exists
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a natural number N(i), such that

(A) tA) (A)

awc;o = a/wl(x) = = &/w'prn‘) = ==
Let N = max(N(1), N(a)g ceoy N(n)o Then

] (2) w) ¢ n)
(CZ,,, Q/V) T a/t/): (Ryey > - a/w-/):

The proposition is proved.
Proposition k4, Let 61' 62, sscy Ck, ecoy Cn be a standard

basis of sequential fuzzy module V, and ( — %a‘ Q. €V
Then C_ = (}, 3 J=t > ) /
LY
Proof = v C
QJ A% a/" B
h —
Therefore C/i = .z Q.
)=
2(za.c
- 5:—.\ A:‘ 77 A)
n
=2 (20.)¢
P

From the definition of the standard basis,

(% c

= jK) Cz =Y

/=

N
Because ,Z,_. ij = 5\/“,-; Then Q}K €, =C fo some j
Therefore n
=A&-C=(+Z Q. C
Q}. = TR d A

by definition 5, implies that

X
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Conversely, from (= )% 0\} we know that (¢ Z &;
Therefore (= 0‘) - This completes the proof.

Theorem. (Bxistence and uniqueness theorem of standard basis
of fuzzy module).

;initely generated sequential fuzzy modules has 2 sole stand-
ard base under minimal condition.

Proof 1° Existence.

Let V be a finitely generated sequential fuzzy modules under

minimal condition, and C be any finite basis, C‘n -{G,‘, casoo)cn}
Suppose C is not standard.

Then (. =2X@&.C for some ( € C C* a,;\‘(’j)by definition 5,

(1
Qir G = € We have Q.. C: <C. Y Let C be the n tuples

of clements of V obtained from C by replacing C. by Q.. C, ‘»
h ) _ w ) N ()
Then C-——{C')C,)~ »Cn

(1)

C is a basis of V tom.

Let ¢= (¢, G- Cu) € VXVX~--XV,

Do (O, 0y &) € VRV Y

Straightforvara ¢ > (P
1 ) n u) a)
If C is not standard either, then (. = j% an‘)* g
for some (‘,A e C 5
() a) v
C,: = aﬂf\ CA
Let C(") = af‘.’ cf') we have
A [.7,] [ b

) 2 L) 2
C{I=CC| > L T C, )

go on in this manner, we gbhain a descending chain,

c c
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) )
C>C ' >C > -~ -~
But since VX VX --- XV is minical conditioned, then there
exists a natural number N, such that
) V1) W+P)
C'=¢ = ~~-=C = ~~- v P

This proves that for any finite basis, there exists a standard

basise
0 R
2  Uniqueness.

let C = {015 02, veoy Gn} and CY = '{C%; cg, coo c;‘}

be two standard basis of the fuzzy module Vo

LW /
Then CX - = ):\ 9 Azl 2, -,

By proposition &4, 3)‘ ) such that

since | n such that
C'=3 Qg C 3K
j K;( /‘K K ) 2 .
]
CJ. = Kk Ck
Pherefore
C,; = 7;‘/ uQ,:K Cx

We conclude that, ¢, = Cy
If not, we can express C; in term of sums of multiples of elements

of C\ {Cﬁ} Phis is a conkradictione

/ / . .
io®o G=%¢ , G =Lk Cp
Then < / \’ < .

e <¢ , <

Therefore C. = C’
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f /
If C.=(, then ¢/ =C. This is a contradictions
A K K J
By reagrrangeing the order, we have
/ N .-
CA:C‘\, A=(,2 - J n

Corollary. Any two basis for finitely generated sequential
fuzzy modules under minimal condition have the same cardinalityy
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