Existence and Uniqueness Theorem
of Standard Basis of Fuzzy Module

Zhou Kai-qi (有开文)
(Dalian Marine College) China

Abstract

In this paper, a new concept on fuzzy module is presented, and the existence and uniqueness theorem of standard masis of fuzzy module is given, i.e. finitely generated sequential fuzzy module has a sole standard basis under minimal condition.

***** ***** ****

We discuss the linear spaces based on fuzzy algebra (0, 1).

Definition 1. Let V be a nonempty set, R be a fuzzy algebra

(0, 1) with the operations a + b = sup {a, b}, ab = inf {a, b},

if V is a linear space over the fuzzy algebra R, it is called a fuzzy module.

Definition 2. A subset W of fuzzy module V is a fuzzy submodule iff $ku + l V \in W$, $(\forall u, v \in W, \forall K, l \in R)$

Example. The set of all solution vectors of $fu_{\mathbf{Z}}\mathbf{z}\mathbf{y}$ relation equation AX = B (A, B are fuzzy matrices, X is a fuzzy vector) is a solution submodule.

Proposition 1. Let S be a nonempty set of fuzzy module V.

The intersection of all fuzzy submodules of V which contains S is a fuzzy submodule. It's called a span of S, and is denoted by < S>.

Definition 3. A basis for fuzzy module V is a minimal spanning set for the fuzzy module.

Definition 4. A fuzzy module W is independent iff U is not a linear combination of elements of $W\setminus\{U\}$ for any $U\in W$. If there is a $U\in W$ which is a linear combination of elements of $W\setminus\{U\}$ it is said to be dependent.

Proposition 2. Every basis of fuzzy module V is independent. Proof let B be a dependent basis in V, there exist $b \in B$, which is a linear combination of elements of $B \setminus \{b\}$. Since $B \setminus \{b\}$ and $B \setminus \{b\}$ is a set of generators of V. This is a contradiction. This completes the proof.

A fuzzy module V is said to be finite spanning if set of generators of V is a finite set.

Definition 5. A fuzzy module V is called a sequential fuzzy module if and only if V is a sequential set, such that

$$\Upsilon u \leq u$$
 ($\forall \Upsilon \in \mathbb{R}$, $u \in V$)
 $u_1 + u_2 \geq \sup\{u_1, u_2\}$ ($u_1, u_2 \in V$)

Definition 6. A basis C of a fuzzy module V is called a standard basis iff whenever $C_{i} = \sum \gamma_{ij} C_{j}$ for C_{i} , $C_{j} \in C$ then $C_{i} = \gamma_{ij} C_{j}$

Definition 7. A sequential fuzzy module V is minimal conditional iff a chain of any subset of V.

$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$$

The process will end in a finite steps, i.e. there exists a natural number N, such that

$$Q_{N}=Q_{N+1}=\cdots=Q_{N+p}=\cdots$$

Proposition 3. If sequencial fuzzy module V is minimal conditioned. Then VXVX ... XV is minimal conditioned too.

Proof A chain of any subset of
$$\bigvee \times \bigvee \times \cdots \times \bigvee$$
, $(\alpha_1^{(1)}, \alpha_1^{(2)}, \cdots, \alpha_1^{(k)}) \ge (\alpha_2^{(k)}, \alpha_2^{(k)}, \cdots, \alpha_2^{(k)}) \ge \cdots \ge (\alpha_{k}^{(l)}, \cdots, \alpha_{k}^{(k)})$

hence

$$a_1^{(\lambda)} \geq a_2^{(\lambda)} \geq \cdots \geq a_n^{(\lambda)} \geq \cdots$$
 $\lambda = 1, 2, \cdots, n$

Since V is minimal conditioned, then for any i, there exists

a natural number N(i), such that

$$a_{N(\lambda)}^{(\lambda)} = a_{N+1(\lambda)}^{(\lambda)} = \cdots = a_{N+p(\lambda)}^{(\lambda)} = \cdots$$

Let N = max(N(1), N(2), ..., N(n). Then $(a_{N}^{(1)}, a_{N}^{(2)}, ..., a_{N}^{(n)}) = (a_{N+1}^{(n)}, ..., a_{N+1}^{(n)}) = ...$

The proposition is proved.

Proposition 4. Let C_1 , C_2 , ..., C_k , ..., C_n be a standard basis of sequential fuzzy module V, and $C_k = \sum_{j=1}^k a_j$, $a_j \in V$. Then $C_k = (k)$;

Proof
$$Q_{j} = \sum_{\lambda=1}^{n} Q_{j\lambda} C_{\lambda}$$
Therefore
$$C_{\lambda} = \sum_{j=1}^{n} Q_{j}$$

$$= \sum_{\lambda=1}^{n} \left(\sum_{\lambda=1}^{n} Q_{j\lambda} C_{\lambda} \right)$$

$$= \sum_{\lambda=1}^{n} \left(\sum_{j=1}^{n} Q_{j\lambda} C_{\lambda} \right) C_{\lambda}$$

From the definition of the standard basis,

$$\left(\sum_{j=1}^{h} a_{jk}\right) C_{k} = C_{k}$$

Because $\sum_{j=1}^{n} Q_{jk} = \bigvee_{j} Q_{jk}$ Then $Q_{jk} C_{k} = C_{k}$ fo some j Therefore $Q_{jk} = \sum_{k=1}^{n} Q_{jk} C_{k} = C_{k} + \sum_{k=1}^{n} Q_{jk} C_{k}$

by definition 5, implies that

Conversely, from $C_K = \sum_{j=1}^{n} A_j$ we know that $C_K \ge A_j$. Therefore $C_K = A_j$. This completes the proof.

Theorem. (Existence and uniqueness theorem of standard basis of fuzzy module).

Finitely generated sequential fuzzy modules has a sole standard base under minimal condition.

Proof 1 Existence.

Let V be a finitely generated sequential fuzzy modules under minimal condition, and C be any finite basis, $C = \{C_1, C_2, C_n\}$ Suppose C is not standard.

Then $C_{\hat{i}} = \sum_{j=1}^{N} Q_{\hat{i}_{j}} C_{j}$ for some $C_{\hat{i}_{j}} \in C_{\hat{i}_{j}} C_{\hat{i}_{j}}$ by definition 5, $Q_{\hat{i}_{j}} C_{\hat{i}_{j}} \subset C_{\hat{i}_{j}}$ We have $Q_{\hat{i}_{j}} C_{\hat{i}_{j}} \subset C_{\hat{i}_{j}}$ Let $C^{(1)}$ be the n tuples of clements of V obtained from C by replacing $C_{\hat{i}_{j}}$ by $Q_{\hat{i}_{j}} C_{\hat{i}_{j}}$.

Then $C^{(1)} = \{C_{\hat{i}_{j}}^{(1)}, C_{\hat{i}_{j}}^{(1)}, C_{\hat{i}_{j}}^{(1)}, C_{\hat{i}_{j}}^{(1)}, C_{\hat{i}_{j}}^{(1)}\}$

C is a basis of V tom.

Let
$$C = (C_1, C_2, \dots, C_n) \in \forall x \forall x \dots x \forall$$

$$C^{(i)} = (C_1, C_2, \dots, C_n) \in \forall x \forall x \dots x \forall$$

Straightforward c > c(1)If $c^{(1)}$ is not standard either, then $c_{i}^{(1)} = \sum_{j=1}^{n} c_{ij}^{(1)} c_{j}^{(1)}$

for some $C_{\lambda} \in C$, $C_{\lambda}^{(i)} > Q_{\lambda}^{(i)} C_{\lambda}^{(i)}$

Let $C_{\lambda}^{(2)} = Q_{\lambda\lambda}^{(1)} C_{\lambda}^{(1)}$ we have $C_{\lambda}^{(2)} = (C_{1}^{(2)}, C_{2}^{(2)}, \cdots, C_{n}^{(2)})$

go on in this manner, we obtain a descending chain,

But since $\bigvee X \bigvee X \cdots X \bigvee$ is minical conditioned, then there exists a natural number N, such that

$$C^{(N)} = C^{(N+1)} = \cdots = C^{(N+p)} = \cdots$$

This proves that for any finite basis, there exists a standard basis.

2° Uniqueness.

Let
$$C = \{C_1, C_2, \dots, C_n\}$$
 and $C' = \{C_1, C_2, \dots, C_n\}$

be two standard basis of the fuzzy module Vo

Then
$$C_{\lambda} = \sum_{j=1}^{N} Y_{kj} C_{j}'$$
 $\lambda = 1, 2, \dots, N$

By proposition 4, 3, such that

since
$$C_{\lambda} = Y_{\lambda}, C_{\lambda}'$$

 $C_{\lambda}' = \frac{n}{2} l_{\lambda K} C_{K}$, $\exists K$, such that
$$C_{\lambda}' = l_{\lambda K} C_{K}$$
Therefore $C_{\lambda} = Y_{\lambda j} l_{\lambda K} C_{K}$

We conclude that, $C_{\lambda} = C_{K}$

If not, we can express $C_{\tilde{A}}$ in term of sums of multiples of elements of $C \setminus \{C_{\tilde{A}}\}$ This is a contradiction.

i.e.
$$c_{\hat{k}} = \gamma_{\hat{k}\hat{j}} c_{\hat{j}}'$$
, $c_{\hat{j}}' = l_{\hat{k}} c_{\hat{k}}$

Then
$$C_{\lambda} \leq C_{j}'$$
, $C_{j}' \leq C_{\lambda}'$

Therefore
$$\zeta_{\lambda} = \zeta_{j}'$$

If $C_{k} = C_{k}'$ then $C_{k}' = C_{k}'$, This is a contradiction.

By rearrangeing the order, we have

$$c_{\lambda} = c_{\lambda}'$$
 $\lambda = 0, 2, \cdots, n$

Corollary. Any two basis for finitely generated sequential fuzzy modules under minimal condition have the same cardinality.

References

- 1. K. H. Kim and F. W. Rouch, Generalized fuzzy matrices, Fuzzy sets and systems, 4(1980) 293-315.
- 2. Wang Peizhuang, Fuzzy set and categories of fuzzy sets, Advances in mathematics, Vol. 11. No. 1 (1982) 1-18.